Le projet GAIA-X

Une infrastructure de données en forme de réseau, berceau d’un écosystème européen vital
Sommaire

1. Préambule ... 2

2. Situation actuelle et motivation ... 4

 2.1 Tendance ... 5

 2.2 Nos objectifs .. 6

 2.2.1 Nous aspirons à la souveraineté des données .. 6
 2.2.2 Nous voulons réduire les dépendances ... 8
 2.2.3 Nous voulons rendre les services en nuage attrayants pour tous ... 8
 2.2.4 Nous créons un écosystème pour l’innovation ... 9

3. Approche de solution: GAIA-X ... 10

 3.1 Objectif ... 11

 3.2 Solution ... 12

 3.3 Le « Projet GAIA-X » du point de vue de l’utilisateur ... 15

 3.3.1 Exemples illustrant les besoins du point de vue de l’utilisateur ... 15

 3.3.1.1 Industrie 4.0/PME, Smart Living et finances .. 16
 3.3.1.2 Santé publique .. 27
 3.3.1.3 Administration publique et milieux scientifiques .. 34

 3.4 Valeur ajoutée du point de vue du fournisseur .. 44

4. Perspectives .. 45

5. Annexes ... 47

6. Participants ... 48
1. Préambule

Nous, représentants du gouvernement fédéral allemand, de l’industrie et des milieux scientifiques, aspirons à la mise en place d’une infrastructure de données performante, compétitive, sûre et fiable pour l’Europe. À cet effet, nous avons, sous le nom de projet « GAIA-X » (titre provisoire), jeté les bases de la création d’une infrastructure de données en forme de réseau ouvert fondée sur les valeurs européennes. Le projet sert les objectifs suivants :

1. Concrétiser la conception d’une telle infrastructure d’un point de vue technique et économique,
2. Créer sur cette base un écosystème commun d’utilisateurs et de prestataires issus d’organisations de l’administration publique, de la santé publique, des entreprises et des institutions scientifiques et
3. Créer un cadre favorable et des structures de soutien.

À nos yeux, le « Projet GAIA-X » est destiné à donner naissance à un écosystème numérique ouvert dans lequel les données peuvent être mises à disposition, rassemblées et partagées en toute sécurité et confiance. Notre objectif est de créer, avec d’autres pays européens et pour l’Europe, ses États, ses entreprises, ses citoyens et citoyennes, une infrastructure de données en forme de réseau de nouvelle génération répondant aux exigences les plus élevées en matière de souveraineté numérique et promouvant l’innovation.

Sur la base des valeurs européennes, nous sommes guidés par les principes directeurs suivants :

1. Respect des règlements européens en matière de protection des données
2. Ouverture et transparence
3. Authenticité et confiance
4. Souveraineté et autodétermination
5. Libre accès au marché et création de valeur européenne
6. Modularité et interopérabilité
7. Convivialité

Les sphères économique, de la science et politique, sont déterminées à œuvrer ensemble pour créer les conditions nécessaires à la création d’une économie de la donnée innovante et orientée vers l’avenir en Allemagne et en Europe. Les milieux économiques et la société attendent à juste titre que soient offerts un degré élevé de sécurité et la disponibilité de l’infrastructure numérique.

Par **infrastructure de données**, nous entendons une infrastructure technique en forme de réseau constituée de composants et de services et permettant l’accès aux données, leur stockage, leurs échanges et leur utilisation conformément à des règles prédéfinies. Par **écosystème numérique**, nous entendons le réseau de développeurs, de fournisseurs et d’utilisateurs de produits et services numériques dédié au principe de transparence, à un accès large et un échange vital. Il s’agit donc d’une base essentielle pour la croissance européenne, l’innovation numérique et les nouveaux modèles commerciaux.
Nous misons sur les atouts éprouvés de l'Europe. Ceux-ci sont, notamment, la diversité de l’offre, la force du secteur des PME ainsi que des structures décentralisées. En faisant le lien entre tous les investissements en technologies numériques menées partout en Europe pour réaliser un impact plus important.

Le « Projet GAIA-X » prévoit la mise en réseau de services d'infrastructure décentralisés, en particulier d'instances en nuage et en périphérie de réseau, pour former un système homogène et convivial. La forme en réseau de l'infrastructure de données qui en résulte renforce à la fois la souveraineté numérique des demandeurs de services en nuage ainsi que la scalabilité et la position concurrentielle des fournisseurs européens de nuage.

L’ouverture aux initiatives nationales et européennes ayant des objectifs similaires donne au projet une impulsion décisive pour une solution européenne commune. Sur la base des solutions existantes et de leur évolution en Europe, nous voulons développer des offres compétitives pour le monde entier. La participation est également ouverte aux acteurs du marché hors Europe qui partagent nos objectifs de souveraineté et de disponibilité des données.

L'infrastructure de données en forme de réseau est adaptée aux besoins des fournisseurs comme des utilisateurs : elle renforce la transparence et la visibilité du côté des fournisseurs, stimule l’innovation dans le domaine de l’économie de la donnée, inclut un engagement clair en faveur de l’interopérabilité des offres et relie les entreprises de toutes tailles - des groupes industriels aux jeunes entreprises, en passant par les PME.

Pour mettre en œuvre l'infrastructure de données en forme de réseau, nous considérons qu’une organisation centrale et européenne est nécessaire. D’un point de vue économique, organisationnel et technique, elle devrait constituer la base d’une infrastructure de données en forme de réseau. Elle aura pour mission de développer une architecture de référence, de définir des standards, des critères de certification et des labels de qualité. Elle devrait être un médiateur neutre et un élément central de l’écosystème européen.

Par ce concept d'infrastructure de données en forme de réseau, nous permettons le développement de l’Europe avec un écosystème dynamique au sein de l’économie de la donnée. Nous aspirons à un écosystème qui offre des avantages égaux en termes de souveraineté et d’utilité non seulement aux milieux économiques et scientifiques, mais aussi à l’État et à la société.
2. Situation actuelle et motivation
2.1 Tendance

La numérisation croissante génère des quantités de données de plus en plus importantes, dont l'utilisation offre un potentiel social et économe considérable. En tant que société, nous bénéficions, par exemple, de l'amélioration du système de santé publique, de la distribution ciblée de biens rares et d'une plus grande efficience des ressources. Les avantages économiques comprennent l'augmentation de la productivité, l'optimisation des processus ou les innovations sous la forme de nouveaux produits et services. La mise en relation de différentes sources de données et leur analyse ouvrent des opportunités supplémentaires de création de valeur, notamment grâce aux méthodes et procédés de l'intelligence artificielle (IA).

La collecte et l'analyse centralisées d'un grand nombre de ces données dans le nuage caractérisent un niveau supérieur de création de valeur par la numérisation (modèle « as a service »), en particulier dans le secteur de la consommation. Cette évolution explique pourquoi les offres en nuage fortement évolutives sont issues du marché de grands fournisseurs web. Les offres en nuage actuelles sont dominées par des fournisseurs non européens très puissants sur le marché et disposant d'infrastructures en nuage très évolutives. Les options européennes n'offrent pas de capitalisation boursière, de scalabilité et d'étendue d'application comparables et sont au mieux actives dans des niches spécialisées.

Un changement de paradigme dans l'utilisation du nuage est en train d'émerger : dans l'Internet des objets (IoT), d'énormes quantités de données s'accumulent de manière décentralisée (par exemple, au niveau d'un capteur ou dispositif portable). Cette évolution est également renforcée par les performances croissantes des terminaux mobiles. En raison d'exigences en matière de disponibilité d’informations en temps réel ou pour des raisons de protection de la propriété intellectuelle (PI) ou de protection des données, un traitement décentralisé s'impose souvent. Dans ces scénarios, on utilise des solutions « en périphérie de réseau » / « en nuage ».

Par « en périphérie de réseau » (edge), nous entendons un principe d’architecture de données décentralisé. Dans l’informatique en périphérie de réseau (Edge computing), les données sont traitées non pas seulement dans un nuage, mais dans le monde entier là où elles sont générées, c’est-à-dire à proximité des processus de production, également avec les technologies du nuage. Ceci est d’une grande importance pour les applications en temps réel où un temps de réaction de quelques millisecondes (latences) est décisif et où le traitement dans le nuage n’est donc pas possible en termes de temps. Le traitement ultérieur dans le nuage est garanti par cette approche et devrait être possible.

En même temps, les entreprises ou organisations sont intégrées dans des réseaux complexes de création de valeur. La transformation numérique les confronte à une double tâche d’intégration : elles doivent orchestrer l’interaction des solutions en périphérie de réseau et en nuage et trouver des solutions au-delà des limites de l’entreprise.

Cette évolution est particulièrement évidente dans le domaine de l’industrie 4.0 : dans le domaine de la production, d’innombrables machines génèrent, au moyen de leurs capteurs, d’énormes quantités de données qui sont gérées par différents fabricants. En raison de la nécessité technique de proximité de la production, ces données sont traitées dans des centres de données en périphérie de réseau. Pour l’analyse, les données des différentes machines doivent non seulement être reliées entre elles, mais aussi associées à des données commerciales. À la fin de ce processus, on enregistre des gains d’efficacité, des améliorations de production et une valeur ajoutée supplémentaire. Si nous voulons exploiter ces avantages plus efficacement, nous devons générer, à partir de masses de données brutes distribuées, des pools de données utilisables, basés sur des données et spécifiques à des domaines. Ces pools constituent le fondement de modèles commerciaux innovants qui vont au-delà des limites de l’entreprise. Ils assurent ainsi notre viabilité future et la création de valeur dans des secteurs industriels où l’Allemagne et l’Europe sont aujourd’hui leaders mondiaux.

Dans le meilleur des cas, on ne dispose actuellement, pour relever ces défis, que de solutions individuelles ou bilatérales. L’infrastructure de données en forme de réseau développée dans le cadre du projet relie les solutions en périphérie de réseau et en nuage existantes et à venir. La combinaison de l’informatique en périphérie de réseau et en nuage relie les avantages des architectures de données décentralisées et centrales en distribuant et en coordonnant le traitement, la conservation et l’analyse des données entre les services locaux en périphérie de réseau et les services centraux en nuage en fonction de l’application et des temps de traitement requis. Il en résulte une infrastructure de données en réseau avec une large disponibilité des données et la prise en compte des exigences attribuées.

2.2 Nos objectifs

2.2.1 Nous aspirons à la souveraineté des données

L’Europe est confrontée d’une part au défi de préserver son modèle économique et social face à la dépendance croissante à l’égard des technologies numériques critiques (par exemple pour la collecte, les échanges, le stockage et l’analyse des données) – ce, dans un contexte où l’on enregistre des tendances oligopolistiques dans l’économie des plateformes numériques. D’autre part, elle doit se positionner face à la concurrence internationale. Les tensions internationales, les conflits commerciaux et la dichotomie numérique exacerbent le problème. Cette discussion se reflète au niveau européen. Nous devons préserver notre marge de manœuvre afin de pouvoir, à
long terme, agir de façon libre et autonome dans le domaine du numérique. À cet effet, nous devons également être souverains en termes numériques dans le domaine des données.

Nous entendons par souveraineté numérique, conformément à la définition du groupe de réflexion « La souveraineté numérique dans une économie de réseau » du Sommet du numérique (Digital-Gipfel), la « possibilité d’autodétermination indépendante de l’État et des organisations » en ce qui concerne « l’utilisation et la conception des systèmes numériques eux-mêmes, des données produites et stockées dans ces systèmes et des processus qui y sont représentés ». Notre projet porte principalement sur l’un des aspects de cette définition, à savoir sur la souveraineté des données, c’est-à-dire « le contrôle complet sur les données stockées et traitées et la décision indépendante qui a droit à l’accès ».

Nous aspirons à une infrastructure de données qui respecte les valeurs libérales et d’autodétermination tant des entreprises que des citoyens européens et qui garantisse ainsi leur souveraineté en matière de données. À cette fin, nous nous appuyons sur les atouts de l’Europe, qui mettent l’accent sur la diversité, les écosystèmes ouverts et la pluralité. Il nous importe de créer des conditions de concurrence équitables et égales et d’affirmer la libre concurrence pour tous les acteurs du marché sur la base de la non-discrimination et sur la base de systèmes ouverts dans le cadre d’un partenariat conjoint avec des fournisseurs internationaux.

2.2.2 Nous voulons réduire les dépendances

Une infrastructure numérique comprend en principe trois niveaux d’architecture :

1. réseaux de transmission de données et matériel (niveau réseau),

2. niveau de maintien des données, y compris les systèmes d’exploitation et les bases de données pour le stockage des données (niveau de données),

3. niveau de traitement et d’utilisation des données, y compris les systèmes d’application, les fonctions et les services (niveau service).

Par infrastructure de données, nous entendons les deuxième et troisième niveaux architecturaux. Les économies d’échelle sont décisives pour le succès commercial des services d’infrastructure de données.

La force de l’économie européenne réside avant tout dans un savoir hautement spécialisé dans ce domaine dans l’industrie et une grande compétence d’intégration dans des réseaux complexes de création de valeur. C’est sur ces bases que s’appuieront les plateformes numériques inter-entreprises (B2B) qui permettent de nouveaux modèles commerciaux. Le succès de ces plateformes dépend avant tout de l’accès aux données et de la volonté des entreprises de les partager dans un cadre de confiance et de manière contrôlée. C’est exactement là qu’intervient le projet GAIA-X. De nombreux domaines industriels connaissent un degré élevé de sensibilité ou de besoin de protection des données. La structure actuelle du marché comporte le risque d’une dépendance à l’égard de fournisseurs internationaux. Les obstacles techniques, économiques et contractuels à la migration de données vers un autre fournisseur d’infrastructure (enferrement propriétaire) limitent la liberté d’action des entreprises, tant en termes de gestion commerciale qu’en cas de conflits politiques. Pour que les plateformes et des industries tout entières réussissent à sécuriser et à élargir leur création de valeur, une infrastructure de données renforçant la souveraineté numérique des utilisateurs est nécessaire.

L’enfermement propriétaire (lock-in) est un phénomène qui survient entre clients et fournisseurs de services en nuage lorsque le passage à une autre solution ou à un autre fournisseur de services est rendu plus difficile, voire impossible, en raison des coûts et des obstacles liés au changement. Les obstacles au changement peuvent être de nature technico-fonctionnelle (dépendance aux spécificités de certains fournisseurs), résulter d’accords contractuels (par exemple, modèles de licences et coûts de pénalité), mais aussi d’un degré élevé de personnalisation spécifique au client, de la difficulté liée au changement d’habitudes ou, tout simplement, du volume de données à transférer.

2.2.3 Nous voulons rendre les services en nuage attrayants pour tous

En Europe, les petites et moyennes entreprises, surtout, sont encore souvent critiquées à l’égard des services en nuage. Ceci est dû à un manque de confiance dans l’offre existante, à la crainte de coûts d’investissement élevés et à un manque de spécialistes dans l’entreprise, ainsi qu’à des craintes de dépendance. Ceux qui décident d’utiliser les services en nuage, souvent, n’utilisent pas toute la gamme des services, mais seulement une petite partie.

Les conséquences possibles sont des désavantages concurrentiels, en particulier pour les entreprises de taille moyenne. Les gains d’efficacité possibles restent inexploités et les idées novatrices ne débouchent souvent pas sur de nouveaux modèles commerciaux.
C’est la raison pour laquelle les entreprises s’appuient de plus en plus sur le recours parallèle à plusieurs fournisseurs d’informatique en nuage (stratégies dites multinuages). Cependant, cela accroit également la complexité et le défi d’une interconnexion, d’une sémantique et d’un traitement de données uniformes. Une infrastructure européenne en réseau qui crée des offres de nuage fiables selon des règles claires, par exemple sur la base de solutions existantes ou de fournisseurs internationaux, et qui les étend pour inclure des composants en périphérie (edge), constitue la bonne réponse à cette réticence, en particulier chez les petites et moyennes entreprises (PME).

Son objectif principal est de créer la confiance nécessaire, y compris et surtout pour les PME, qui n’ont en général qu’une quantité limitée de données. Sur la base de l’infrastructure de données en réseau, les PME seront en mesure d’utiliser leurs données ensemble et mieux à l’avenir, franchissant ainsi l’un des principaux obstacles aux nouveaux modèles commerciaux.

2.2.4 Nous créons un écosystème pour l’innovation

L’Europe investit massivement dans les technologies numériques et les modèles commerciaux innovants. Nous devons veiller à ce que ceux qui stimulent l’innovation soient également ceux qui en tirent un bénéfice économique. Avec notre projet GAIA-X, nous jetons les bases d’un écosystème numérique ouvert qui permettra aux entreprises et aux modèles commerciaux européens d’évoluer de manière compétitive à travers le monde. C’est ainsi que nous sauvegardons la création de valeur et l’emploi en Europe.
3. Approche de solution: GAIA-X
Sous l’impulsion des développements décrits ci-dessus (industrie 4.0, informatique en périphérie de réseau et en nuage, etc.), l’importance des stratégies multinuages et, partant, de l’interopérabilité augmente rapidement. Les utilisateurs attendent flexibilité, fonctionnalité, convivialité, disponibilité mondiale, services interentreprises, spécialisation des services ou traitement et conservation distribuées des données. Une migration simple vers d’autres fournisseurs de services en nuage ou en périphérie de réseau doit être possible. Les utilisateurs exigent l’interopérabilité, c’est-à-dire la recherche et l’utilisation efficace de services via de nouveaux intermédiaires de données et de services. Cela inclut également la transparence des services offerts. Les utilisateurs veulent pouvoir répartir de manière flexible le traitement des données entre de nombreux fournisseurs tout en recourant à des processus robustes.

L’interopérabilité est donc l’une des exigences centrales envers l’infrastructure de données en réseau. Elle est envisagée à trois niveaux d’infrastructure : interconnexion technique et sémantique au niveau du réseau, des données et des services. En Europe, il existe déjà des infrastructures de réseau et des concepts d’interconnexion pour les infrastructures en nuage qui peuvent être intégrés grâce à notre approche et qui sont essentiels pour permettre la distribution. Par exemple, trois des cinq plus grandes plateformes d’interconnexion (IXP) du monde sont situées en Europe.

En tant que valeur ajoutée pour l’utilisateur, une infrastructure de données en réseau doit permettre des échanges intradomaines et interdomaines spécifiques ainsi que la liaison des données et des services au-delà des limites des fournisseurs et des clients. En particulier, la collaboration entre les instances en nuage et en périphérie de réseau doit être facilitée. Cela réduira également les obstacles auxquels se voient confrontées les PME désireuses d’accéder à l’informatique en nuage et en périphérie de réseau. Des standards communs aideront à briser les silos de données spécifiques à un domaine qui ne peuvent être ni reliés ni évalués en raison d’un manque d’interfaces de données. Des solutions sur-mesure pourront être créées pour chaque application. De nouvelles chaînes de valeur et de traitement seront rendues possibles et de nouveaux modèles de traitement et d’affaires distribués massivement, tels que l’intermédiation de données ou de services, seront encouragés. Notre projet peut répondre à ces exigences en offrant des services basiques d’interopérabilité que les utilisateurs ou les fournisseurs pourront préciser pour des services d’interopérabilité spécifiques à des domaines particuliers. Cela va des systèmes d’alignement et de vocabulaire aux services de base contractuels et commerciaux pour la facturation, la certification et les comptes.

3.1 Objectif

L'infrastructure de données en réseau renforce, au niveau mondial, la concurrence loyale dans les réseaux de création de valeur de l’économie numérique. Elle offre aux acteurs un accès efficace à toutes les applications numériques ou en nuage pertinentes tout en garantissant un maximum d'autodétermination et de souveraineté des données.

3.2 Solution

Le « Projet GAIA-X » met en réseau des infrastructures centralisées et décentralisées (en particulier des services en nuage et en périphérie de réseau) pour former un système homogène et convivial. L’écosystème distribué qui en résulte renforce à la fois la souveraineté numérique des demandeurs de services en nuage et l’évolutivité ainsi que la position concurrentielle des fournisseurs européens de services en nuage. Les petites et moyennes entreprises, en particulier, bénéficient de la transparence du marché, d’un large accès à d’autres offres et des possibilités d’action qui en résultent. De plus, il prend en compte les différentes préférences en matière de sécurité, de temps de latence et d’étendue des applications, fournit des solutions sur mesure et permet de faire appel à différents fournisseurs en nuage.

L’accent doit être mis plus particulièrement sur les économies d’envergure que nous réalisons grâce à l’infrastructure de données en réseau. L’utilisation multiple d’instances en nuage et en périphérie de réseau conduit à des avantages en termes d’efficience résultant d’une augmentation de la gamme de prestations. Par exemple, des nœuds redondants augmentent la sécurité. Si un nœud tombe en panne (par exemple, en raison de pannes de courant ou de catastrophes naturelles), un autre nœud prend le relais. De surcroît, les applications à forte intensité de calcul peuvent être traitées de manière « distribuée » entre des instances en nuage conçues à cet effet, ce qui se traduit par une augmentation des performances plus que proportionnelle. Enfin, il est toujours possible d’accéder à la technologie en nuage ultramodernes, car de nouveaux investissements individuels et des investissements de remplacement sont constamment réalisés dans le réseau du grand nombre de nœuds interconnectés. Sur la base de l’infrastructure de données en réseau, il est aussi possible de mettre en place un écosystème pour des projets de développement de logiciels, dont peuvent tirer profit les milieux économiques et scientifiques, aussi bien que l’État et la société. L’exigence de neutralité de l’infrastructure de données en réseau stabilise cet écosystème : tout fournisseur de services en nuage, qu’il soit nouveau ou déjà sur le marché, peut devenir un nœud du réseau (nœud GAIA-X) en utilisant la technologie GAIA-X et son architecture de référence.

Dans ce cadre, les caractéristiques essentielles sont les suivantes :

- Utilisation de technologies ouvertes et sûres fournies par l’infrastructure de données en réseau, interfaces pour des échanges de données simples et sûrs, possibilités d’utilisation d’applications et de fonctions de tiers, ainsi que respect des normes permettant une migration facile des données. Les technologies existantes sont utilisées et les technologies ou services manquants sont développés et rendus accessibles par les acteurs de l’écosystème, également sur la base de technologies Open Source.

fournies. Elle reprend en outre des caractéristiques telles que la capacité temps réel, la souveraineté des données sur la base de degrés de protection certifiés, les modes de consommation (par exemple, le marché au comptant), le modèle de prix et la durabilité écologique (par exemple, l’efficacité énergétique et la consommation d’énergie). L’exigence de l’auto-description joue un rôle important dans le renforcement de la souveraineté des données dans des domaines d’application qui nécessitent, par exemple, un stockage des données en Allemagne ou au moins dans le champ d’application du règlement général sur la protection des données (RGPD). Les nœuds peuvent être en nuage public ou privé ou en périphérie de réseau.

• Un référentiel logiciel fournit des composants qui doivent ou peuvent être utilisés par tous les fournisseurs en fonction de leur catégorisation, en particulier des services d’identification et d’autorisation, des composants d’interface ou des certificats. Sur le plan technique, ces composants pourraient être fournis de façon centralisée, en utilisant une approche pair à pair, ou de manière distribuée sur plusieurs nœuds.

• Les différents services au sein d’un nœud et pour les échanges entre différents nœuds sont réalisés sous la forme de fonctions (modèle « Fonction en tant que service »). Cela permet un degré élevé d’interopérabilité entre différents nœuds, l’interchangeabilité des fournisseurs de services (ce qui permet d’éviter l’en- fermement propriétaire) ainsi qu’une utilisation et une facturation efficaces des services. Les interfaces, services et produits nécessaires à cet effet doivent être harmonisés par des normes et pouvoir être facilement identifiés et utilisés dans un répertoire central pour tous les participants. Nous développons ainsi une infra-structure qui constitue la base d’un écosystème de données numérique vital et évolutif.

• Les services de l’écosystème GAIA-X peuvent être utilisés directement par le fournisseur ou via des plate-formes numériques. Pour ce faire, un inventaire des nœuds et capacités de service disponibles est mis à disposition, sur la base duquel l’utilisateur lui-même ou la plate-forme numérique en tant qu’intermédiaire sélectionne le service approprié au cas par cas. Grâce à ce service de répertoire central, nous aidons à trouver des fournisseurs appropriés et à identifier rapidement et sûrement les bases de données pertinentes. Afin d’assurer non seulement l’agilité technique, mais aussi les conditions cadres contractuelles, des contrats cadres qui fixent les dispositions contractuelles et constituent des conclusions de contrats concrètes entre utilisateur et fournisseur à chaque appel du service.

La participation à l’écosystème suppose une obligation contraignante de la part des fournisseurs respectifs de s’entendre sur des règles communes. La preuve du respect de ces règles peut être apportée sous la forme d’une certification des fournisseurs, une fois que les fournisseurs, nœuds et services, notamment en ce qui concerne les conditions techniques et organisationnelles indispensables. Il s’agit notamment de la sécurité informatique, des niveaux de service, du degré de souveraineté des données réalisée et du cadre contractuel. En principe, la certification devrait être prouvée par un audit transparent effectué par un tiers indépendant et digne de confiance. À cette fin, on s’appuie sur des procédures d’audit et de certification déjà établies et émergentes (par exemple, des normes minimales pour l’utilisation de services en nuage externes de la BSI, C5, ISO 27001 et Trusted Cloud). Il faut encourager les innovations en matière de certifications pouvant être réalisées automatiquement sur le plan technique. Les architectures de référence existantes doivent être prises en compte, par exemple l’International Data Spaces Association (IDSA).
L’« International Data Spaces Association » (IDSA) offre une architecture de référence avec plus de 100 partenaires associés, qui permet des échanges souverains de données au sein d’un écosystème avec des droits d’utilisation clairement définis, et forme avec cela une composante d’un cadre GAIA-X. L’architecture de référence IDSA définit une infrastructure technique et comprend des règles contractuelles de même que des règles sémantiques qui assurent l’échange et l’utilisation de données dans un écosystème. La liaison ou l’analyse des données peut être techniquement empêchée ou rendue possible par une composante de logiciel (connecteur IDS). Avec cela, les services en nuage existantes ainsi que des services nouveaux sont englobés dans une économie numérique interopérable qui respecte la souveraineté de la donnée.

Figure 1: Vue d’ensemble de l’infrastructure de données et de l’écosystème

Source: BMWi
3.3 Le « Projet GAIA-X » du point de vue de l’utilisateur

L’infrastructure de données en réseau constitue la base d’un écosystème qui intègre efficacement les qualités des différents participants et encourage la coopération. Les utilisateurs ont accès à un portefeuille de produits et de services pertinents : l’infrastructure de données en réseau

• intègre des produits et services numériques et en nuage existants (« State of the art ») et offre également la possibilité de répondre à d’autres besoins spécifiques par des offres modulaires de petits fournisseurs ou de spécialistes, par exemple ;

• offre une transparence totale grâce à l’identification de critères réglementaires et de protection des données éprouvés pour les produits et services offerts. Elle crée la transparence par l’auto-description en ce qui concerne le niveau de confidentialité de tous les participants de l’écosystème. Cela se reflète dans la garantie du contrôle de l’utilisation des données (souveraineté des données) ;

• simplifie la gestion des interfaces informatiques et l’intégration, en particulier dans le cas des stratégies multinuages et de la mise en commun des données, grâce à un degré élevé d’interopérabilité de produits compatibles et à la fourniture d’autorisations pour l’ensemble des domaines de sécurité. Les silos de données spécifiques à un domaine, qui ne pouvaient pas être connectés et évalués auparavant en raison d’un manque d’interfaces de données, pourraient maintenant être brisés, ce qui permettrait d’éviter l’enfermement propriétaire. Cela permet ou facilite des solutions sur mesure pour chaque application spécifique. En outre, une contribution importante peut être apportée à l’acceptation de l’application de l’intelligence artificielle pour les données particulièrement sensibles ;

• permet de stocker les données là où les utilisateurs le jugent utile en fonction de la classification des données respective. L’utilisateur peut ainsi conserver la souveraineté sur des données particulièrement sensibles tout en partageant d’autres données avec des partenaires aux fins d’une utilisation commune ;

• crée les conditions préalables à l’optimisation des stratégies de données des utilisateurs. Leurs besoins, c’est-à-dire des infrastructures en nuage décentralisées et/ou centrales, peuvent être reliés entre eux. De ce lien résultent de nouvelles options sur la façon dont les données et les algorithmes peuvent être utilisés en toute sécurité. Ainsi, par exemple, cela permet à différents partenaires de coopération le long de la chaîne de valeur de migrer des données vers les applications. Afin de protéger la propriété intellectuelle, les utilisateurs peuvent ainsi conserver leurs algorithmes et leurs données chez eux ;

• apporte une contribution importante à l’émergence d’écosystèmes numériques dans les différents domaines d’utilisation en permettant le passage de solutions bilatérales de projets individuels à des solutions de marché. Des contrats et des procédures standardisés réduisent les coûts de transaction, des marchés de données peuvent émerger et la disponibilité des données s’en trouve améliorée.

3.3.1 Exemples illustrant les besoins du point de vue de l’utilisateur

Pour démontrer la valeur ajoutée du projet, nous présentons ci-après quelques exemples illustrant les besoins dans les domaines de l’industrie 4.0/ PME, du Smart Living, des finances, de la santé, de l’administration publique et des sciences. Cette présentation n’est qu’un exemple, dans la mesure où la sélection retenue ne prétend pas à l’exhaustivité et ne fixe aucune priorité. Ces exemples
visent à montrer le potentiel de l’infrastructure de données en réseau sur la base de modèles d’application en principe pertinents dans d’autres secteurs également (par exemple, mobilité, énergie). Le projet est ouvert à tout moment à d’autres exemples de besoins, qui seront publiés en ligne par le ministère fédéral de l’Économie et de l’Énergie (BMWi) et accessibles sur www.data-infrastructure.eu.

3.3.1.1 Industrie 4.0/PME, Smart Living et finances

Les exemples relevant du domaine de l’industrie 4.0\(^3\) et encouragés par la Fédération de l’Industrie allemande (BDI), l’Association allemande des constructeurs de machines et équipements (VDMA) et la Fédération allemande de l’Industrie Électrique et Électronique (ZVEI) montrent que les entreprises, de taille moyenne notamment, sont confrontées à des défis très similaires en ce qui concerne l’intégration et l’évaluation des données et de leurs solutions dans un langage et une sémantique uniformes et des structures ouvertes et modulaires. Dans les relations commerciales classiques entre fabricants de composants, constructeurs de machines et exploitants de systèmes, les questions relatives à la possibilité de contrôle de la transmission des données, et donc à la protection de la propriété intellectuelle, jouent un rôle majeur.

Pour le secteur financier, la coopération des acteurs concernés est d’une importance décisive, notamment d’un point de vue réglementaire. Les plateformes numériques ouvertes et l’utilisation de méthodes d’intelligence artificielle (IA) permettent aux Bourses, par exemple, d’interagir plus efficacement avec les autorités de surveillance et les entreprises.

Dans l’exemple du Smart Living, qui est également encouragé par la ZVEI, l’accent est davantage mis sur la convivialité et un accès ouvert aux plateformes en nuage (plateformes Cloud) de différents fournisseurs. Jusqu’à présent, un grand nombre de normes et la nécessité d’autorisations multiples de l’utilisateur sur différentes plateformes empêchent une utilisation généralisée.

\(^3\) En outre, la BDI soutient également les activités visant à développer des exemples de besoins pour les domaines d’application du Smart Living, des finances, de la santé publique, de l’administration publique et des sciences.
EXEMPLES PRATIQUES
A : En route vers l’industrie 4.0 – Comment les entreprises peuvent-elles travailler ensemble de manière fiable ?

Exemple pratique et défis actuels

- Le fabricant d’un composant d’automatisation souhaite avoir accès aux données de fonctionnement de son produit, qui est installé dans une machine elle-même exploitée par une entreprise tierce. L’enregistrement permanent de l’état de la machine permet au fabricant, par exemple, d’optimiser la sécurité et l’efficacité de ses composants et de l’ensemble du système.

- Cet exemple très simple, et en même temps typique, d’une relation d’affaires dans l’industrie soulève un certain nombre de questions, par exemple : qui est propriétaire des données du fabricant de composants, qui peut y accéder, et dans quel but ? Comment les données peuvent-elles être monétisées ? Les données sont-elles disponibles dans un format standardisé ?

- Ces questions peuvent actuellement être résolues bilatéralement tout au long d’une chaîne de valeur définie. Mais les données pertinentes pour le fabricant sont disponibles sous forme non agrégée via un grand nombre d’exploitants, une évolutivité via des réseaux de création de valeur n’est pas possible.

- Pour pouvoir coopérer dans le domaine du « Condition monitoring » (c’est-à-dire l’agrégation, l’analyse et la présentation continues des données de fonctionnement et d’état par des capteurs), les fabricants de composants, constructeurs de machines et exploitants ont besoin d’une infrastructure fiable pour les échanges de données et de règles communes pour l’authentification interentreprises et le contrôle des accès.

Figure 2 : Exemple : Travailler ensemble de manière fiable – en route vers l’industrie 4.0

Source : Bosch, Plattform Industrie 4.0
Quelle est la valeur ajoutée du projet GAIA-X ?

- Les nœuds GAIA-X agissent comme des « bases de confiance » en permettant l’authentification des partenaires dans le réseau de création de valeur et la régulation des droits d'accès. Il n’est donc plus nécessaire de procéder à une coordination bilatérale complexe. Les différents acteurs peuvent communiquer au-delà des différents domaines de sécurité des entreprises du réseau sur la base de relations de confiance et d’une infrastructure fiable qui permet des échanges de données sécurisés. Chaque entreprise décide elle-même où ses données sont stockées, par qui et dans quel but elles peuvent être traitées.

- Le projet peut créer la base d’un marché pour la monétisation des données opérationnelles dans les réseaux industriels de création de valeur industrielle. Dans le même temps, des mesures incitatives peuvent être prises pour encourager les échanges de données entre les différents acteurs.

Parrain
Michael Jochem – Bosch et Plattform Industrie 4.0
Exemple pratique et défis actuels

- Mettre l’industrie 4.0 en pratique signifie mettre en réseau toutes les composantes de la chaîne de valeur afin d’offrir des services à valeur ajoutée basés sur les données : cela pose de grands défis, en particulier pour les entreprises de taille moyenne.

- Les installations de production modernes se composent d’un grand nombre de machines et composants différents, dont certains utilisent également différents systèmes en nuage. La liaison et l’intégration des données et des systèmes s’effectuent actuellement dans le cadre de projets complexes. L’absence de processus standardisés, de disponibilité continue des données et d’accords-cadres pour les échanges de données explique la lenteur de la diffusion des solutions de l’industrie 4.0.

- Les exploitants et les fabricants de machines et d’installations posent également des exigences élevées en matière de souveraineté des données : ils veulent pouvoir décider eux-mêmes où stocker les données de production et les applications porteuses de savoir-faire – par exemple dans le système de contrôle, « en périphérie de réseau » ou dans des instances en nuage privé plutôt que dans le nuage de leurs clients.

- Seul un écosystème de services à valeur ajoutée clé en main utilisables dans des environnements de production hétérogènes peut permettre de passer à la mise en œuvre généralisée de l’industrie 4.0.
Quelle est la valeur ajoutée du projet GAIA-X ?

- Le projet crée une valeur ajoutée en se superposant aux actuels hyperscalers/fournisseurs en nuage comme une sorte de couche de gestion multilatérale qui relie l’infrastructure de production et les nuages avec une sémantique de plus haut niveau et des services d’échanges de données, simplifiant ainsi la gestion des interfaces.

- Concrètement, le projet peut réduire l’effort requis pour trouver, aux fins de l’intégration de chaque machine, une solution de projet individuel bilatérale avec l’équipementier, laquelle coordonne l’accès aux domaines de sécurité. Grâce à l’infrastructure de données en réseau, tous les équipementiers peuvent être intégrés efficacement via des interfaces centrales au moyen de normes interopérables et compte tenu des exigences de sécurité, ce qui réduit considérablement l’effort requis pour les projets de l’industrie 4.0.

- Cela permet à un écosystème de se développer sous une forme décentralisée, hétérogène et évolutive, système qui, d’une part, relie les différents niveaux de calcul et de stockage entre la périphérie et le nuage et qui, d’autre part, permet le stockage des données et l’utilisation d’algorithmes conformément aux droits IP.

Parrain
Gerd Hoppe – Beckhoff Automation
(Cas d’utilisation, coordination avec VDMA, ZVEI)
Exemple pratique et défis actuels

- Une diversité croissante de variantes, des bouleversements technologiques et l'intégration d'équipementiers toujours plus nombreux dans les réseaux de production caractérisent la transformation numérique des industries manufacturières.

- Dans le même temps, les exigences en matière de transparence et de contrôle de la chaîne d'approvisionnement augmentent et touchent chaque entreprise. Assurer l'approvisionnement en composants est un défi majeur, et ce, non pas seulement en période de conflits commerciaux internationaux. Lors de campagnes de rappel, il est très important de savoir quel composant a été installé dans quel lot de production. Il est également important d’améliorer la détection précoce de défauts de série sur le terrain (track and trace).

- Dans ce cadre, le plus grand défi réside dans la mise à disposition et l’interconnexion de données provenant de systèmes informatiques hétérogènes de différents acteurs tout en préservant la souveraineté des données tout au long de la chaîne de production et d’approvisionnement. Une image complète des données est essentielle pour identifier les défauts sans ambiguïté.

- Dans les solutions sectorielles, les échanges entre entreprises et la mise en relation de données hétérogènes se sont jusqu’à présent principalement faits sur un plan bilatéral. Une réglementation commune de la participation à l’écosystème et de la coopération pourrait réduire considérablement l’effort et les obstacles à la participation, en particulier pour les moyennes entreprises. De nouveaux modèles commerciaux peuvent ainsi émerger et les synergies au sein du réseau de création de valeur peuvent être encore mieux exploitées.

Figure 4 : Exemple : Synergies dans les réseaux des équipementiers
Quelle est la valeur ajoutée du projet GAIA-X ?

- Le projet facilite la définition de critères clairs et compréhensibles pour la participation et la coopération dans l’écosystème et réduit ainsi l’effort de coordination bilatéral entre les entreprises intéressées.

- Grâce à la « qualification » unique en tant que nœud GAIA-X, les acteurs peuvent mettre leurs propres données à la disposition d’un cercle potentiellement plus large de parties intéressées afin d’améliorer leurs propres produits ou de développer des services numériques.

- Le projet facilite le transfert sélectif de données et renforce ainsi la souveraineté des données.

- Les spécifications de standardisation et une sémantique unifiée permettent de mieux associer les données entre elles. Les cas d’utilisation typiques, tels que la traçabilité des produits précursieurs, peuvent être mieux mis en œuvre, y compris dans le cadre d’une gestion d’identité uniforme. Parallèlement, l’effort de mise en œuvre des solutions de suivi et de traçabilité interentreprises peut être considérablement réduit.

- Le projet peut servir d’intégrateur. Il en résulte un écosystème complet et ouvert qui stimule les échanges de données et de nouveaux modèles commerciaux.

Parrains
Markus Quicken – SupplyOn
Sebastian Ritz – German Edge Cloud
Dieter Meuser – IoTOS
Lars Nagel – IDS Association
D : Un environnement de nuage sécurisé et multifonctionnel pour l'économie du logement afin de générer des solutions pour des « habitats intelligents » (Smart Living) répondant à des exigences élevées en matière de latence.

Exemple pratique et défis actuels

• L'écosystème en rapport avec le Smart Living est en train de devenir un marché attractif. Rien qu’en Allemagne, 23 millions d’appartements locatifs pourraient être équipés de solutions d’automatisation et d’appareils intelligents.

• Ces dispositifs doivent pouvoir interagir sans heurts. Assurer la saisie, le traitement et la mise en réseau en continu de données est la condition nécessaire au développement de modèles commerciaux basés sur l’intelligence artificielle (dans le graphique : nœuds GAIA-X). Cela nécessite un environnement de nuage approprié.

• De nombreuses entreprises du secteur du logement souhaitent stocker et traiter les données clients exclusivement dans des environnements de nuage en Europe (zone RGPD).

• Les services intelligents dépendent également de la mise en relation de données provenant de systèmes adjacents, tels que Smart Energy ou Smart Mobility, dans des applications basées sur l’intelligence artificielle. Ces données doivent être structurées intelligemment et être disponibles de manière sécurisée et fiable, ce qui n’est pas encore le cas.

• L’évolutivité du Smart Living nécessite un environnement de nuage européen sécurisé, évolutif et performant qui inclut des périphériques locaux pour éviter une latence élevée.

Figure 5 : Exemple: Smart Living

Source : ZVEI, pour le consortium « Smart Living »
Quelle est la valeur ajoutée du projet GAIA-X ?

- Le projet offre au secteur du logement un accès simple et sécurisé à un environnement de nuage multifonctionnel dans la zone RGPD (p. ex. stockage de données, machine learning, description sémantique, reconnaissance de formes, comportement prédictif).

- Il met en réseau des centres de données régionales et spécialisés sur le plan fonctionnel et contribue ainsi à l’évolutivité d’applications intelligentes qui dépendent de l’informatique en périphérie de réseau en raison des exigences élevées en matière de latence.

- Le projet facilite l’établissement de spécifications de standardisation appropriées pour relier les quantités croissantes de données, favorisant ainsi le développement d’autres applications de l’intelligence artificielle, en particulier par la coopération entre l’économie numérique, le secteur du logement et l’industrie électrique.

Parrains

Plate-forme pour des services Smart Living sensibles au contexte, intelligents et prédictifs – ForeSight

Anke Hüneburg und Jochen Schäfer – L’Association ZVEI, pour le consortium « Smart Living », bénéficie d’aide dans le cadre du concours d’innovation intitulé « L’intelligence artificielle en tant que moteur d’écosystèmes pertinents pour l’économie nationale » du BMWi

Dr. Hilko Hoffmann – DFKI

Kerstin Bergmann – Bosch

Thomas Feld – Strategion
Exemple pratique et défis actuels

- Le Big Data et l'intelligence artificielle sont les principaux moteurs de l’innovation dans le secteur financier. Ils ne sont pas seulement d’importants domaines de recherche, ils ont d’ores et déjà un impact sur les modèles d’affaires des banques et des Bourses.

- À l’avenir, les autorités de surveillance des marchés financiers utiliseront également des applications de l’intelligence artificielle pour lutter plus efficacement contre le blanchiment d’argent et la manipulation des marchés, par exemple.

- Les principaux acteurs de ce secteur unissent actuellement leurs forces pour former un « Financial Big Data Cloud » (FBDC) afin de mettre en place une plate-forme de données en nuage pour le secteur financier. Cette plate-forme intégrera dans un pool de données communes les données financières d’entreprises, d’autorités publiques et de milieux scientifiques qui n’étaient pas encore reliées, et sera optimisée pour le développement d’applications et de systèmes utilisant l’intelligence artificielle.

- L’infrastructure informatique sous-jacente a besoin d’un coffre-fort de données sécurisé qui répond aux exigences légales et prudentielles élevées du secteur financier. Les données doivent, en fonction de leur sensibilité, être mises à la disposition des différents groupes d’utilisateurs à des degrés divers.

- La plate-forme fournira également des outils d’analyse, des outils pour échanges de données et des capacités de calcul.

Figure 6 : Exemple : Financial Big Data Cloud

Source : Hessisches Wirtschaftsministerium, Deutsche Börse, Deutsche Bundesbank, TechQuartier
Quelle est la valeur ajoutée du projet GAIA-X ?

- Le projet peut être utile au FBDC dans le sens d’une approche multinuages en tant qu’autre plate-forme d’infrastructure offrant de meilleures possibilités pour le développement et l’utilisation d’applications utilisant des outils à base d’intelligence artificielle.

- Le projet accroît la transparence sur le marché en nuage et apporte ainsi une contribution importante à la souveraineté en matière de données. Les utilisateurs peuvent obtenir une vue d’ensemble ciblée des offres et des conditions associées (par exemple, où les données sont-elles hébergées ?). Cette transparence est particulièrement importante pour les acteurs du secteur financier. Dans certains cas, ceux-ci sont soumis à des exigences strictes quant à l’endroit où leurs données peuvent être stockées et aux modalités et fins de leur utilisation.

- De cette manière, le projet facilite l’accès d’autres participants au FBDC et peut ainsi élargir le groupe cible et la portée de l’écosystème qui se développe en rapport avec des données financières. L’établissement de liens entre l’écosystème du FBDC et d’autres écosystèmes sectoriels, tels que ceux de l’industrie, présente également un potentiel particulier.

Parrains
Dr. Stephan Bredt – Ministère de l’Économie de la Hesse
Konrad Sippel – Deutsche Börse
Prof. Stefan Bender – Deutsche Bundesbank
Dr. Kevin Bauer – TechQuartier

3.3.1.2 Santé publique

Le secteur de la santé est très réglementé et très décentralisé. Les exemples de besoins présentés portent tous sur l’utilisation de l’intelligence artificielle dans le secteur de la santé. L’élaboration de solutions appropriées exige beaucoup d’efforts pour intégrer les exigences des nombreux acteurs concernés. Dans le même temps, le traitement des données des patients pose des exigences élevées en matière de protection des données. Le ministère fédéral de la Santé (BMG) encourage les solutions numérisées et l’intelligence artificielle dans le domaine de la santé, entre autres en soutenant l’introduction de l’infrastructure télématicque incluant le dossier electronique du patient comme base pour ces solutions. Le ministère a émis un avis favorable sur ces exemples et se dit prêt à utiliser ultérieurement l’offre à développer dans le cadre du projet. La connectivité à l’infrastructure télématicque est particulièrement importante à cet égard. À cette fin, il est possible de recourir aux expériences actuellement faites par gematik GmbH.
Exemple pratique et défis actuels

- À partir de mai 2020, le législateur européen exigera des fabricants de techniques médicales qu’ils fournissent des données sur les performances et la sécurité des produits tout au long de leur cycle de vie. Ces données sont recueillies dans les hôpitaux où les produits sont utilisés. Les méthodes de l’intelligence artificielle peuvent soutenir l’extraction et l’évaluation automatisées des données.

- De nombreux acteurs du secteur de la santé peuvent bénéficier d’une collecte continue de données : les fabricants des produits, les médecins, les caisses d’assurance maladie, les organismes publics de surveillance du marché et les instituts de recherche dans le domaine de la médecine et de la recherche sur les services de santé.

- Une grande partie des données cliniques ne peut actuellement pas être utilisée à des fins statistiques ou scientifiques en raison de formats de données différents et de la forme non structurée des données. Ceci empêche d’en tirer des enseignements en termes d’avancées médicales.

- En ce qui concerne l’utilisation des données relatives à la santé, de nombreuses réglementations, normes et lois nationales et internationales doivent être respectées, lesquelles exigent des mesures techniques sophistiquées et font parfois obstacle à la facilité d’utilisation.

- Il existe de nombreuses réserves dans ce secteur lorsqu’il s’agit de confier des données de santé à des fournisseurs commerciaux de services de nuage avec des systèmes à source fermée.
Quelle est la valeur ajoutée du projet GAIA-X ?

- Le projet peut jeter les bases d’un système fiable pour l’utilisation des données de santé et constituer ainsi la mise en œuvre technique de spécifications internationales en matière de sécurité juridique, informatique et de cybersécurité. L’offre d’espace de stockage et de capacité informatique dans un cadre sécurisé permet aux hôpitaux et aux PME de bénéficier des économies d’échelle des services en nuage y compris dans des domaines sensibles.

- Le projet peut inclure des fonctions d’anonymisation et de pseudonymisation normalisées ainsi que de classification des données, requises pour une utilisation conforme aux lois par différents groupes d’utilisateurs, par exemple pour l’apprentissage de modèles d’intelligence artificielle (utilisation dite secondaire).

- Le projet pourrait fournir des interfaces normalisées permettant à différents groupes d’utilisateurs et fournisseurs de soins de santé d’accéder à un environnement de nuage fiable.

- Des projets bilatéraux individuels peuvent déboucher sur des solutions en réseau de différents partenaires de projet permettant l’utilisation des données, facilitant l’utilisation de l’intelligence artificielle et encourageant ainsi les synergies.

- Des solutions modulaires et distribuées permettent de séparer le traitement et l’hébergement des données. Grâce à une structure en réseau, les données anonymisées peuvent être fusionnées là où elles sont requises pour une analyse. Cela permet de conserver des données très sensibles à un endroit donné, par exemple à l’hôpital, tandis que d’autres données peuvent être échangées à des fins de traitement et d’analyse.

Parrain
Frank Trautwein – Raylytic, pour le consortium « L’intelligence artificielle pour les études cliniques » (KIKS), financé dans le cadre du concours d’innovation intitulé « L’intelligence artificielle en tant que moteur d’écosystèmes pertinents pour l’économie nationale » du BMWi
G : Le triage électronique basé sur l’IA au service des urgences

Exemple pratique et défis actuels

- En Allemagne, les services des urgences sont encombrés par les cas de moindre importance. Sur plus de 10 millions d’urgences par an, 3,5 millions ne sont pas des urgences hospitalières réelles. Le personnel a donc moins de temps à consacrer aux vraies urgences. Par conséquent, le risque d’erreurs médicales et de traitements tardifs augmente.

- Les systèmes d’assistance basés sur l’intelligence artificielle peuvent remédier à cette situation : ils peuvent améliorer l’orientation du patient depuis son arrivée à l’hôpital jusqu’au traitement par un triage électronique et soutenir le personnel médical dès le début du traitement. Un tel système d’assistance évalue, entre autres, les données que les patients saisissent déjà eux-mêmes dans la salle d’attente – complétées par d’autres résultats d’examens préliminaires.

- L’accès à des données réelles de grande qualité est une condition préalable au développement de ces applications et d’autres applications IA dans le secteur de la santé. Celles-ci doivent être fournies par le biais d’une infrastructure numérique qui garantit la protection des patients et répond donc aux exigences les plus strictes en matière de protection et de sécurité des données.

- Partant du dossier électronique du patient et de l’infrastructure télématique, une telle plateforme pour le domaine des soins est déjà en construction. Les données de recherche des hôpitaux universitaires seront mises à disposition dans le cadre de l’initiative d’informatique médicale. Ces sources de données issues de la recherche et du domaine des soins pourraient être reliées, via l’infrastructure de données en réseau, de manière sécurisée et anonyme au

Figure 8 : Exemple : Le triage électronique basé sur l’intelligence artificielle au service des urgences

Source : Charité – Universitätsmedizin Berlin et Plattform Lernende Systeme
profit du progrès médical et des applications innovantes telles que le triage électronique.

Quelle est la valeur ajoutée du projet GAIA-X ?

• Aux fins du triage électronique, les différents acteurs du système de santé (les patients, les cabinets médicaux, les hôpitaux, les assureurs maladie, notamment) peuvent obtenir un accès à des données réelles anonymes (par exemple, des données du dossier personnel du patient, des dossiers de cas, des dispositifs portables, des données de recherche tirées d'études cliniques ou de divers registres) via un centre de confiance sur la base de l'infrastructure de données en réseau et les utiliser dans un espace de données hautement sécurisé (les données confidentielles des patients doivent être stockées de manière sécurisée en Allemagne).

• En reliant de manière sécurisée les différentes sources de données, la recherche dans le domaine de la santé peut apporter une valeur ajoutée concrète à la société sur la base de données réelles. Cela crée une base importante pour l'émergence de nouveaux modèles d'affaires dans un environnement conforme aux lois, par exemple des applications spéciales de triage électronique.

• Le projet soutient l'utilisation d'une base de données organisée de manière décentralisée et contribue ainsi à la souveraineté des données. Au lieu des données de santé, ce sont, pour la première fois, les algorithmes relatifs aux données qui sont déplacés. L'application de méthodes d'apprentissage fédératif (Federated Learning) permet le traitement de données de santé sensibles sur place, par exemple, directement à l'hôpital, et en conformité avec les lois. Un environnement de nuage sécurisé, en réseau et multifonctionnel permet également d'utiliser les méthodes d'analyse IA les plus récentes.

• Le projet fournit également la base technique requise pour un « don » individuel de données afin que les citoyens puissent mettre d'eux-mêmes leurs propres données de santé à la disposition de partenaires librement choisis et y participer, par exemple pour des projets de recherche.

Parrains
Prof. Dr. Klemens Budde – Charité – Universitätsmedizin Berlin et Plattform Lernende Systeme
Dr. Thomas Schmidt – acatech et Plattform Lernende Systeme
Exemple pratique et défis actuels

- La collecte de données sur la santé fait l’objet d’un changement de paradigme fondamental : en plus de la collecte de données habituelle opérée par les médecins et les cliniques au cas par cas, les données peuvent désormais être collectées et évaluées en continu via les dispositifs portables intelligents des patients.

- Sur la base de ces grandes quantités de données significatives, il est possible de développer et d’affiner d’excellente manière des algorithmes IA afin de pouvoir identifier plus tôt qu’au préalable les situations critiques, par exemple chez les patients victimes d’une crise cardiaque.

- Cela nécessite parfois des centaines de milliers de jeux de données d’apprentissage de qualité testée. Jusqu’à présent, il n’a pas été possible, en Allemagne, de regrouper une quantité suffisante de données provenant de différentes sources (par exemple, hôpitaux, cabinets médicaux, articles portables) pour atteindre une masse critique pour les applications décrites.

- La mise en réseau des zones de données est nécessaire pour permettre une analyse intégrative. Le médecin hospitalier et le médecin exerçant en cabinet peuvent accéder aux évaluations, le patient peut accéder à ses propres données de santé et résultats d’analyse.

Figure 9 : Exemple : Dispositifs portables intelligents

Source : Berlin Institute of Health, Charité – Universitätsmedizin Berlin
Pour les données particulièrement sensibles, le stockage et le traitement des données doivent avoir lieu en Allemagne ou dans l’UE, voire, dans certains cas, chez des fournisseurs allemands.

Quelle est la valeur ajoutée du projet GAIA-X ?

- Le projet jette les bases du développement et de l’utilisation d’interfaces normalisées et d’une sémantique appropriée afin de pouvoir relier et évaluer de manière ciblée les données du plus grand nombre possible d’acteurs.

- Des classifications strictes et contraignantes des données ainsi que des contrôles centralisés des participants aux écosystèmes facilitent l’utilisation des données dans le système de santé conformément au RGPD. Dans ce cadre, les normes de l’infrastructure de données en réseau peuvent servir de base de confiance.

- L’intégration des mémoires de nuage en Allemagne ou dans l’UE en tant que nœuds GAIA-X permet le stockage de telles données sensibles.

- L’ouverture et la flexibilité du projet qui en résulte permettent de relier les plateformes (de données) existantes à d’autres domaines de recherche et de santé et à des initiatives internationales.

Parrains
Christian Lawerenz et Prof. Dr. Roland Eils – Berlin Institute of Health et Charité – Universitätsmedizin Berlin
3.3.1.3 Administration publique et milieux scientifiques

L’administration publique et les milieux scientifiques seront désormais également d’importants domaines d’application pour les solutions et services en nuage.

Exigences particulières du point de vue de l’administration fédérale allemande : une étude en cours d’élaboration pour le ministère fédéral de l’Intérieur, de la Construction et du Territoire (BMI) montre que l’administration publique est actuellement très dépendante de quelques fournisseurs étrangers de logiciels. Les solutions d’avenir doivent répondre à la fois à des exigences élevées en matière de sécurité de l’information et de sécurité juridique du RGPD afin de préserver la souveraineté numérique de l’administration. La loi sur l’accès en ligne (OZG) oblige également le gouvernement fédéral, les Länder et les communes à offrir leurs services administratifs en ligne également d’ici à la fin 2022 et à relier leurs portails administratifs pour constituer un portail collectif. Cette transformation numérique suppose une infrastructure de nuage performante qui garantisse un degré élevé de souveraineté numérique.

Le BMI est ouvert à l’utilisation de l’offre à développer dans le cadre du projet. Le ministère planche actuellement sur des scénarios qui pourraient être mis en œuvre à l’avenir dans les conditions de sécurité informatique suivantes, sur la base du projet GAIA-X :

3. Les modules pertinents de la protection de base informatique sont observés et mis en œuvre.

4. Pour certaines applications, la certification ISO 27001 (basée sur la protection de base informatique) est recommandée. La nécessité doit être examinée au cas par cas.

Dans le monde numérique, l’État n’agit pas seulement en tant que régulateur, mais aussi en tant qu’utilisateur. Pour les applications de l’administration publique, la sécurité, la fiabilité, la confiance et la transparence jouent un rôle décisif. Les applications dans le domaine scientifique dépendent avant tout d’une grande performance de l’infrastructure et d’une grande disponibilité des données.
3. APPROCHE DE SOLUTION: GAIA-X
Exemple pratique et défis actuels

- Le développement des agents conversationnels nécessite des services de reconnaissance vocale et textuelle de haute qualité, qui sont actuellement offerts principalement par des hyperscalers américains.

- L’administration publique est soumise à des exigences strictes en matière de protection des données et de confidentialité lors de l’utilisation de services en nuage. Par exemple, les données des citoyens ne peuvent pas être stockées ou traitées en dehors de l’infrastructure du Land ou du gouvernement fédéral. L’accès aux données est soumis à l’autorité souveraine de l’administration publique et doit être refusé aux prestataires de services.

Figure 10 : Exemple : L’agent conversationnel dans l’administration publique

Source : Dataport
Quelle est la valeur ajoutée du projet GAIA-X ?

- Le projet peut soutenir la réalisation d’agents conversationnels en créant la base nécessaire pour un environnement de nuage conforme aux lois pour le développement et l’utilisation d’agents conversationnels dans l’administration – environnement dans lequel des éléments fonctionnels à base d’outils de l’intelligence artificielle IA peuvent être reliés de manière modulaire (dans le sens de « Function as a Service ») à l’infrastructure des autorités publiques pour le stockage et le traitement des données.

Parrains
Dr. Marianne Wulff et Dr. Derek Meier – Dataport
Exemple pratique et défis actuels

- La population mondiale augmente, le changement climatique progresse, les évolutions sociales et démographiques appellent des réponses.

- D’ici à 2030, 70 % de la population mondiale vivra dans les villes. L’observation de la Terre par satellite fournit une base d’information importante pour de nouvelles solutions de développement urbain et spatial durable.

- Grâce aux données satellitaires librement disponibles, il est en principe possible d’enregistrer la dynamique de l’urbanisation mondiale.

- Cependant, les institutions de recherche allemandes dépendent des fournisseurs en nuage commerciaux américains pour l’analyse et le traitement de ces immenses quantités de données.

- Cette dépendance comporte des risques. Si les fournisseurs cessent de fournir leurs services, la recherche perdra l’accès à des bases de données riches d’enseignements ainsi qu’à des outils spécifiques pour le traitement efficace des données d’observation de la Terre. De plus, dans cette situation complique la protection efficace de la propriété intellectuelle pour les organisations du secteur de la recherche : leurs algorithmes d’analyse de données sont situés sur les serveurs des fournisseurs en nuage.

- Afin d’offrir des solutions concrètes et efficaces aux urbanistes et aux décideurs, il est souvent nécessaire de combiner et d’évaluer les informations satellitaires et des données des administrations publiques. Cependant, l’accès est difficile en raison d’obstacles réglementaires au stockage des données. Il y a également un manque d’interfaces appropriées.

Figure 11 : Exemple : Space4Cities

Source : DFD, DLR

3. APPROCHE DE SOLUTION: GAIA-X
Quelle est la valeur ajoutée du projet GAIA-X ?

- Le projet ne peut pas résoudre le problème des capacités de stockage de données nécessaires, mais il peut soutenir la mise en relation de différents participants au nuage au sein d'un écosystème commun dans lequel peuvent avoir lieu des échanges sécurisés et normalisés de données, d'algorithmes, de fonctionnalités et de résultats (européens).

- La véritable valeur ajoutée réside dans l'évaluation synergique des stocks de données provenant de l'observation de la Terre et de l'administration publique afin de briser les silos de données et d'offrir des informations sur mesure pour le développement urbain et/ou pour de nouveaux produits et modèles commerciaux numériques (par exemple, dans l'économie du partage ou les transports en commun) en conformité avec le RGPD. Cela contribue à des solutions durables pour la population urbaine de demain.

- Idéalement, l'écosystème pourrait donner naissance à des options permettant également le stockage des données auprès de fournisseurs européens, cela assurant un accès redondant à des données de recherche particulièrement pertinentes. Cela pourrait également réduire le risque de perte de propriété intellectuelle.

Parrains

- Dr. Thomas Esch et Julian Zeidler – Centre allemand de données de télédétection (DFD)
- Centre aérospatial allemand (DLR)
Exemple pratique et défis actuels

- La recherche biomédicale est devenue une science à forte intensité de données : le séquençage du génome génère des données de projet de l’ordre du téraoctet en quelques jours.

- La recherche dépend d’une infrastructure technique permettant non seulement le stockage sécurisé de grandes quantités de données, mais fournissant également une architecture informatique puissante pour l’analyse complexe de données de l’ordre du pétaoctet.

- L’Institut allemand de recherche sur le cancer de Heidelberg et le Berlin Institute of Health/Charité mettent actuellement en place une plateforme en nuage pour le stockage et l’analyse de données génomiques afin de mieux prévoir l’apparition du cancer à l’avenir et de soutenir le développement de nouvelles méthodes de traitement basées sur des données.

- Cette plate-forme de recherche utilise le nuage de l’Initiative nationale allemande de bioinformatique (de.NBI), financé par le ministère fédéral de l’Éducation et de la Recherche. Le nuage de.NBI offre une infrastructure fédérée et universitaire pour les scientifiques de la vie allemands.

- L’un des défis consistera à relier la plate-forme à d’autres domaines de recherche et de santé par le biais des technologies de nuage et en périphérie de réseau et à intégrer le projet dans des projets internationaux.

Figure 12 : Exemple : un nuage de recherche pour les données génomiques

Source : Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Centre allemand de recherche sur le cancer
Quelle est la valeur ajoutée du projet GAIA-X ?

- Le projet permet un accès sécurisé et conforme au RGPD aux données des différents acteurs du secteur de la santé grâce à des contrôles centralisés des nœuds GAIA-X correspondants.

- La possibilité d'intégrer au réseau GAIA-X des fournisseurs de composants (d’infrastructure) puissants et des fonctions de calcul et d’analyse performantes, et leur accessibilité pour différents utilisateurs promettent des avantages en termes de temps, de coût et d’efficacité grâce à l’utilisation d’effets d’échelle.

- L’ouverture et la flexibilité qui en résulte permettent de relier les plateformes (de données) existantes à d’autres domaines de recherche et de santé et à des initiatives internationales. Par exemple, il est également possible de faciliter l’accès au nuage de NBI et de l’utiliser davantage, par exemple dans le cadre de futurs projets de soutien basés sur l’architecture GAIA-X.

- Grâce à la possibilité d’intégrer des données au-delà de domaines individuels (p. ex. données d’images, informations cliniques), le réseau GAIA-X offre, dans l’intérêt des patients, la possibilité de réaliser des analyses intégratives plus complexes dans le cadre de la médecine personnalisée.

Parrains
Christian Lawerenz, Prof. Dr. Roland Eils et Jürgen Eils – Berlin Institute of Health et Charité – Universitätsmedizin Berlin
Peter Lichter et Ivo Buchhalter – Centre allemand de recherche sur le cancer
• Au fur et à mesure que la numérisation progresse dans tous les domaines, la disponibilité des données augmente considérablement. L’analyse de ces données à l’aide, entre autres, de l’intelligence artificielle et de simulations permet, par exemple, de représenter des modèles climatiques ou de trafic, ou encore, d’autres scénarios très complexes et à fort volume de données comme dans le secteur financier (p. ex. découverte de scénarios de fraude), de la santé (analyse génomique) ou industriel (optimisation des chaînes logistiques).

• Pour effectuer ces calculs, on a besoin, à court terme, d’une très grande puissance de calcul, telle que fournie par les « High Performance Computers » (HPC). L’une des technologies en développement est, dans ce cadre, l’informatique quantique (actuellement : simulateurs quantiques), qui promet une multiplication des performances pour certains problèmes.

• Alors que le HPC et les ordinateurs quantiques ouvrent de nouvelles possibilités dans de nombreux domaines, il n’est pas possible, pour bon nombre d’utilisateurs potentiels, d’investir dans des systèmes correspondants, car ceux-ci ne seraient utilisés que partiellement et n’ont qu’une courte durée de vie utile en raison des cycles d’innovation rapides.

• Toutefois, une utilisation en commun par différents utilisateurs serait concevable, à savoir via un modèle d’infrastructure et de service garantissant un degré élevé de sécurité (des données) et contrôlant l’entrée et la sortie des données nécessaires ainsi qu’une séparation d’autres services. Des approches initiales de ces « modèles de partage » existent dans la recherche (les « supercalculateurs » partagés), mais ces capacités sont difficiles d’accès pour les utilisateurs industriels et il n’existe pas de modèle opérationnel commercial.

Figure 13 : Exemple : haute performance et informatique quantique « as a Service »
Quelle est la valeur ajoutée du projet GAIA-X ?

- Le projet peut offrir un large accès aux capacités de calcul haute performance (HPC) et quantique « en tant que service ». Cela permet à d’autres utilisateurs (opérant en dehors de la recherche publique) d’utiliser le HPC pour l’IA, la modélisation et la simulation et de stocker les résultats de manière sécurisée. Les mises à jour et la maintenance sont assurées par le fournisseur.

- En raison de l’utilisation croissante, les services de calcul haute performance (HPC) peuvent être offerts de façon plus rentable parce que l’utilisation augmente en volume et que les marges de contribution peuvent être réalisées dans une mesure plus importante grâce à la quantité.

- En tant que base pour des marchés de données intersectoriels et sécurisés, le projet peut créer un environnement idéal pour le fonctionnement du HPC, et dans lequel les utilisateurs peuvent garder la souveraineté de leurs données à tout moment.
3.4 Valeur ajoutée du point de vue du fournisseur

Avec son infrastructure de données en réseau, le projet GAIA-X renforce les possibilités des fournisseurs allemands et européens de développer et de perfectionner leurs offres d’informatique en nuage et pour centres de données. L’amélioration des possibilités de mettre sur le marché des offres sur mesure innovantes et adaptées aux besoins augmentera l’activité d’investissement. Les fournisseurs européens bénéficieront de la croissance prévue du marché.

Pour ce faire, il est essentiel d’établir des échanges de données standardisés entre les différents domaines de sécurité et de garantir la souveraineté des données au-delà des limites d’un système donné. L’intégration modulaire des offres et des services, l’utilisation flexible des infrastructures ainsi que la possibilité d’amener des fonctions aux données dans différents domaines favorisent l’émergence de nouveaux produits et services innovants. Dans cet écosystème, les start-ups et autres entreprises européennes pourront développer de nouvelles activités. La nature open source, comme le libre accès pour les petits fournisseurs, permettra également de créer des produits et services de niche.

Dans le cadre du projet, des offres individuelles constitueront ensemble une structure homogène. Les différentes offres gagnent en visibilité sur le marché et peuvent ainsi mieux se distinguer par leurs atouts concurrentiels.

Aux trois niveaux de la chaîne de valeur, on a plus particulièrement les catégories de fournisseurs suivantes :

- **Infrastructure** : centres de données, centres de données en périphérie de réseau, fournisseurs de services Internet, réseau étendu à définition logicielle (SD-WAN), nœuds Internet et interconnexions, ainsi que les opérateurs.

- **Systèmes informatiques et en nuage** : fournisseurs en nuage, hébergeurs, fournisseurs de services gérés (MSP).

- **Services et plates-formes** : fournisseurs de plates-formes, IDS, AI as a Service, intégrateurs de systèmes.

L’infrastructure de données en réseau permet de créer des effets de synergie considérables aux trois niveaux. Des structures décentralisées avec des moyens de liaison de qualité et des mécanismes d’intégration et de mise en réseau des sites industriels et de services sont ici des facteurs décisifs. Des offres de services innovantes et évolutives « made in Europe », adaptées aux besoins de l’économie et de l’industrie européennes, verront le jour. Le caractère ouvert de l’infrastructure de données en réseau offre également un accès aux fournisseurs de niche. Les avantages suivants peuvent être réalisés pour les fournisseurs :

- gagner de nouveaux groupes de clients grâce à une plus grande portée,

- augmenter leur potentiel de vente en construisant un réseau de partenaires, par un positionnement et un marketing stratégiques et en élargissant leur portefeuille de services par de nouvelles offres innovantes,

- améliorer leur rapport coût-efficacité en partageant l’infrastructure en réseau et

améliorer leurs processus d’exécution des commandes à l’aide de services GAIA-X.
Le présent « Projet GAIA-X » a été élaboré par les ministères, entreprises et institutions mentionnés en annexe, et a été largement approuvé. Nous sommes convaincus que notre projet GAIA-X offre les bonnes réponses aux défis de la nouvelle économie mondiale des données. Cette ouverture à de nouveaux concepts, à forte intensité de recherche et comportant des risques, est une contribution essentielle à la compétitivité future de notre modèle.

Notre objectif est de développer la prochaine génération d’une infrastructure européenne de données pour l’Europe, ses États, ses entreprises et ses citoyens. À nos yeux, l’infrastructure de données en réseau est donc le berceau d’un écosystème numérique ouvert et transparent dans lequel les données et les services peuvent être mis à disposition, regroupés et partagés dans un cadre de confiance.

4. Perspectives

Au cours des derniers mois, nous avons géré conjointement le projet et l’avons fait progresser dans le cadre de trois axes de travail distincts. Le point de vue de l’utilisateur et les cas d’utilisation de l’axe de travail 1 figurent principalement au chapitre 4 du présent document. La conception des bases techniques a été principalement abordée au niveau de l’axe de travail 2, elle a également été intégrée au chapitre 4. Les thèmes et la structure organisationnelle sont en outre repris en annexe. L’axe de travail 3 s’est penché sur la communication du projet et l’implication de partenaires européens et de la Commission européenne; la proposition d’organisation pour la mise en œuvre du projet a également été élaborée dans ce cadre.
Nous voulons maintenant conférer au projet des structures fixes. Ensemble, nous invitons les partenaires européens intéressés à participer au projet, à le développer et à le soutenir. Il en va de même pour les partenaires internationaux qui partagent nos objectifs de souveraineté et de disponibilité des données. Pour y parvenir, nous aspirons à un « Projet GAIA-X » permanent sous la forme d’une organisation dotée de la capacité juridique, et dont l’objectif est la promotion et la mise en œuvre d’une infrastructure européenne de données. En particulier, cette organisation favorisera le développement de l’architecture de référence de l’infrastructure de données en réseau et sera chargée de définir et de préciser les exigences techniques et les règles applicables à l’infrastructure de données. Les partenaires fondateurs devront également décider du nom futur de l’organisation, de l’infrastructure de données et de ses produits.

En particulier, les critères suivants doivent être remplis : conformément aux objectifs, l’organisation doit être attractive et ouverte aux partenaires de nombreux pays différents. Ses méthodes de travail doivent être efficaces et transparentes. Elle a pour mission de développer une architecture de référence et de définir des normes, des critères de certification et des labels de qualité. L’organisation doit être en mesure de travailler de manière rentable et de mettre en œuvre un modèle économique viable. Elle doit également être en mesure de créer des sous-organisations à des fins d’affaires spécifiques.

Une possibilité serait la création d’une société coopérative européenne (SCE), à laquelle les partenaires intéressés pourraient participer et dans laquelle ils pourraient s’investir. Dans l’esprit d’ouverture et de connectivité qui caractérise le projet, nous invitons les partenaires européens intéressés, en particulier en France, à poursuivre les réflexions avec nous, sur cette base, dans les semaines à venir. La fondation devrait avoir lieu le plus rapidement possible (printemps 2020). La coopération des participants au sein de l’organisation et de l’infrastructure nécessite un modèle de gouvernance. Nous poursuivrons la coordination et la conceptualisation nécessaires à cet effet.

La première validation de la mise en œuvre technique sur la base des domaines d’application a déjà eu lieu. Nous poursuivrons énergiquement la mise en œuvre technique et mettrons en œuvre les premiers cas d’utilisation le plus rapidement possible. En plus de la fondation, nous prévoyons de terminer rapidement un premier test du concept technique au cours du deuxième trimestre de 2020 (« Proof of Concept »); nous prévoyons également le début de l’exploitation réelle avec les premiers fournisseurs et utilitaires à la fin de 2020.
5. Annexes

D’autres documents de référence et informations sur le projet GAIA-X sont disponibles sur la page d’accueil : www.data-infrastructure.eu. Les entreprises et les organisations intéressées à s’impliquer dans le projet peuvent également prendre directement contact avec les personnes responsables, à l’adresse data-infrastructure@bmwi.bund.de.

Figure 14 : Structure de travail Technologie

- **Board Technologie**
 (direction + parrains de groupe de travail)
 Cet axe de travail élabore les bases technologiques d’une infrastructure numérique (infrastructure logicielle, réseaux et, à l’avenir, matériel). Cette instance élabore des convictions de base en tant que lignes directrices et tient compte des conditions cadres issues des axes de travail 1 et 3 pour formuler un concept de solution technique.

- **CTO Office**

- **Groupe de travail 6 – Implémentation de test**
 Ce groupe de travail teste l’architecture élaborée à l’aide des exigences à partir d’un cas d’utilisation dans un environnement de test. Gammes de thèmes des prototypes :
 1. **Stockage de données**
 Système de type Dropbox pour le stockage et les échanges de fichiers
 Objectif : première évaluation de l’architecture globale pour un volume de fonctions modéré. Premier test de mécanismes d’autorisation et de sécurité.
 2. **Edge Cloud**
 Scénario industriel avec centre de données en périphérie de réseau et données machines
 Objectif : première évaluation de l’interaction « nuage » et « périphérie de réseau », test de la capacité temps réel, éventuellement, de l’interaction avec 5G (réseau « campus »).
 3. **Apprentissage automatique**
 Scénario haute performance avec apprentissage automatique et Big Data Case
 Objectif : évaluation d’un scénario de nuage d’une certaine importance avec des exigences élevées en matière de volumes de données, de transfert de données et de puissance de calcul.
6. Participants

Les fondements de la création d’une infrastructure de données en réseau basée sur les valeurs européennes ont été élaborés à l’initiative de la Plattform Industrie 4.0 et au nom des personnes suivantes :

- **Peter Altmaier** (Ministre de l’Économie et de l’Énergie)
- **Dr. Roland Busch** (Siemens AG)
- **Jörg Hofmann** (IG Metall)
- **Prof. Dr. Henning Kagermann** (Global Representative and Advisor Plattform Industrie 4.0)
- **Anja Karliczek** (Ministre de l’Éducation et de la Recherche)
- **Prof. Dieter Kempf** (Bundesverband der Deutschen Industrie e.V./Fédération des industries allemandes)
- **Christian Klein** (SAP SE)
- **Bernd Leukert** (Deutsche Bank AG)
- **Prof. Dr. Friedhelm Loh** (Friedhelm Loh Stiftung & Co. KG/German Edge Cloud)
- **Dr. Frank Melzer** (Festo AG & Co. KG)
- **Rolf Najork** (Robert Bosch GmbH)
- **Claudia Nemat** (Deutsche Telekom AG)
- **Prof. Dr.-Ing. Reimund Neugebauer** (Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.)
- **Henrik A. Schunk** (SCHUNK GmbH & Co. KG. Spann- und Greiftechnik)
- **Karl-Heinz Streibich** (acatech – Deutsche Akademie der Technikwissenschaften e.V.)
La conception et l’élaboration de ce document ont été réalisées en étroite collaboration par :

- Dr. Maximilian Ahrens (Deutsche Telekom AG)
- Fabian Biegel (SAP SE)
- Marco-Alexander Breit (Ministère Fédéral de l’Économie et de l’Énergie)
- Dr. Andreas Fier (Deutsche Telekom AG)
- Michael Jochem (Robert Bosch GmbH)
- Mirco Kaesberg (Robert Bosch GmbH)
- Dr.-Ing. Fabian Kohler (Ministère de l’Éducation et de la Recherche)
- Dr. Thomas Lange (acatech – Deutsche Akademie der Technikwissenschaften e.V.)
- Prof. Dr. Boris Otto (Fraunhofer-Institut für Software und Systemtechnik)
- Dr. Carsten Polenz (SAP SE)
- Prof. Dr. Peter Post (Festo AG & Co. KG)
- Dr. Sebastian Ritz (German Edge Cloud, une entreprise de la Friedhelm Loh Group)
- Ernst Stöckl-Pukall (Ministère Fédéral de l’Économie et de l’Énergie)
- Harald A. Summa (DE-CIX Group AG)
- Dr. Herbert Zeisel (Ministère de l’Éducation et de la Recherche)
et avec le concours de :

- **Joachim Astel** (noris network AG)
- **Dr. Roman Bansen** (Bitkom e.V.)
- **Dr. Kevin Bauer** (TechQuartier, FinTech Community Frankfurt GmbH)
- **Dr. Stephan Bredt** (Ministère de l’Économie, de l’Énergie, des Transports et du Logement du Hesse)
- **Jochen Breh** (Robert Bosch GmbH)
- **Dr. Ivo Buchhalter** (Deutsches Krebsforschungszentrum Heidelberg / Centre allemand de recherche sur le cancer Heidelberg)
- **Prof. Dr. Klemens Budde** (Charité Universitätsmedizin Berlin)
- **Bundesdruckerei GmbH**
- **DE-CIX Management GmbH**
- **Prof. Dr. Claudia Eckert** (Fraunhofer-Institut AISEC)
- **Günter Eggers** (e-shelter services GmbH)
- **Jürgen Eils** (Charité Universitätsmedizin Berlin)
- **Prof. Dr. Roland Eils** (Berlin Institute of Health und Charité Universitätsmedizin Berlin)
- **Dr. Thomas Esch** (Deutsches Zentrum für Luft- und Raumfahrt e.V. / Centre aérospatial allemand)
- **Andreas Fauler** (arago GmbH)
- **Thomas Feld** (Strategion GmbH)
- **Dr. Marius Feldmann** (Cloud&Heat Technologies GmbH)
- **Dr. Dirk Franke** (DLR e.V. / Centre aérospatial allemand)
- **Dr. Friedrich Gröteke** (Ministère Fédéral de l’Économie et de l’Énergie)
- **Heiko Großkopf** (Bundesamt für Sicherheit in der Informationstechnik / l’Office fédéral allemand de la sécurité dans la technologie de l’information)
- **Gerd Hoppe** (Beckhoff Automation GmbH & Co. KG)
- **Kai Kalusa** (VDMA e.V.)
6. PARTICIPANTS

- Dr. Markus Ketterl (msg systems ag)
- Oliver Klein (Bundesverband der Deutschen Industrie e.V. / Fédération des industries allemandes)
- Lukas Klingholz (Bitkom e.V.)
- Johannes Krafczyk (T-Systems International GmbH)
- Thomas Kriesel (Bitkom e.V.)
- Christian Lawerenz (Berlin Institute of Health und Charité Universitätsmedizin Berlin)
- Henning Lesch (eco – Verband der Internetwirtschaft e.V. / l’Association allemande de l’industrie Internet)
- Prof. Dr. Peter Lichter (Deutsches Krebsforschungszentrum Heidelberg / Centre allemand de recherche sur le cancer Heidelberg)
- Dr. Kai Lindow (Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.)
- Dr. Philipp Ludewig (Ministère Fédéral de l’Économie et de l’Énergie)
- Dr. Kai Martius (secunet Security Networks AG)
- Matthias Marx (Ministère Fédéral de l’Économie et de l’Énergie)
- Dr. Derek Meier (Dataport AöR)
- Dieter Meuser (IoTOS GmbH)
- Dipl.-Ing. Lars Nagel (International Data Spaces e.V.)
- Dr. Andreas Nauerz (Robert Bosch GmbH)
- Thomas Niessen (Kompetenznetzwerk Trusted Cloud e.V.)
- Clemens Otte (Bundesverband der Deutschen Industrie e.V. / Fédération des industries allemandes)
- Klaus Ottradovetz (Atos SE)
- Markus Quicken (SupplyOn AG)
- Alexander Rabe (eco – Verband der Internetwirtschaft e.V. / l’Association allemande de l’industrie Internet)
- Ulli Tobias Reitz (Deutsche Telekom AG)
- Thomas Riegler (VDMA e.V.)
• **Dr. Martin Sauer** (Robert Bosch GmbH)

• **Dr. Thomas Schmidt** (acatech – Deutsche Akademie der Technikwissenschaften e.V. / Plattform Lernende Systeme)

• **Dr. Christina Schmidt-Holtmann** (Ministère Fédéral de l’Économie et de l’Énergie)

• **Arne Schmieg** (German Edge Cloud GmbH & Co. KG.)

• **Tim Schneider** (Ministère de l’Éducation et de la Recherche)

• **Marco Schuldt** (Ministère Fédéral de l’Économie et de l’Énergie)

• **Joachim Sedlmeir** (acatech – Deutsche Akademie der Technikwissenschaften e.V.)

• **Nabi Siefken** (Ministère Fédéral de l’Économie et de l’Énergie)

• **Konrad Sippel** (Deutsche Börse AG)

• **Thorsten Sommer** (Deutsches Zentrum für Luft- und Raumfahrt e.V. / Centre aérospatial allemand)

• **Sebastian Steinbüß** (International Data Spaces Association e.V.)

• **Dr. Christoph F. Strnadl** (Software AG)

• **Frank Trautwein** (RAYLYTIC GmbH)

• **René Walter** (Ministère Fédéral de l’Interieur, de la Construction et du Territoire)

• **Andreas Weiss** (EuroCloud Deutschland_eco e.V.)

• **Dr. Christian Weiss** (Deutsche Telekom AG)

• **Sascha Wessel** (Fraunhofer-Institut AISEC)

• **Lisa Witte-Stremmel** (Ministère de la Santé)

• **Dr. Marianne Wulff** (Dataport AöR)

• **Torsten Wunderlich** (DATEV eG)

• **Julian Zeidler** (Deutsches Zentrum für Luft- und Raumfahrt e.V. / Centre aérospatial allemand)