Sektoranalyse
Nigeria

Analyse des Potenzials für PV-Diesel-Hybridanlagen zur Eigenstromversorgung mit Schwerpunkt auf acht Teilsektoren
Inhaltsverzeichnis

Abbildungsverzeichnis ... 3
Tabellenverzeichnis ... 3
Abkürzungsverzeichnis .. 4
Zusammenfassung ... 6
1. Einleitung ... 9
2. Technische Studie ... 12
 2.1 Ziel ... 13
 2.2 Methodik .. 13
 2.3 Quantitativer Vergleich .. 14
 2.4 Wesentliche Annahmen .. 16
 2.4.1 Technische Annahmen .. 16
 2.4.2 Finanzielle Annahmen .. 16
 2.5 Stromerzeugung durch Photovoltaik .. 18
 2.5.1 Anlagen zur Eigenstromversorgung .. 18
 2.5.2 Speichersysteme .. 18
3. Überblick über die Teilsektoren ... 19
 3.1 Agrarwirtschaft ... 20
 3.1.1 Futtermittelherstellung .. 20
 3.1.2 Reisverarbeitung .. 22
 3.1.3 Kühlagerhaltung ... 24
 3.2 Verarbeitendes Gewerbe .. 25
 3.2.1 Softdrinks und Mineralwasser .. 26
 3.2.2 Farben und verwandte Erzeugnisse .. 27
 3.2.3 Kosmetika .. 29
 3.2.4 Arzneimittel ... 30
 3.2.5 Schaumstoffherstellung ... 31
Anhang

Literaturverzeichnis

6.3 Geschäftsmodule für den Einsatz von Eigenstrom in Nigeria

6.1 Sofortkauf – Fallstudie Protergia Energy

6.2 Geschäftsmodell für Kühlräume – Fallstudie ColdHubs

6.3 Strom als Dienstleistung – Fallstudie StarSight

7. Literaturverzeichnis

8. Anhang
Abbildungsverzeichnis

Abbildung 1: Vergleich der Teilsektoren ... 8
Abbildung 2: Stromvertriebsgesellschaften in Nigeria .. 17
Abbildung 3: Attraktivität jedes Teilsektors für PV-Diesel-Hybridanlagen 40
Abbildung 4: Makroanalytischer Vergleich ... 41
Abbildung 5: Technischer Vergleich ... 42
Abbildung 6: Vergleich der Amortisationsdauern .. 44
Abbildung 7: Vergleich der internen Projektzinssätze .. 45
Abbildung 8: Vergleich der internen Eigenkapitalzinssätze 45
Abbildung 9: Stromgestehungskosten auf Grundlage der Sensitivität gegenüber den gewichteten durchschnittlichen Kapitalkosten .. 46
Abbildung 10: Ergebnisse des Vergleichs der Teilsektoren auf Grundlage des quantitativen Modells ... 47

Tabellenverzeichnis

Tabelle 1: Quantitative Analysematrix ... 15
Tabelle 2: Kategorisierung von Stromverbrauchern in Nigeria 18
Tabelle 3: Relevante Richtlinien für die Errichtung von PV-Diesel-Hybridanlagen zur Eigenstromversorgung .. 35
Tabelle 4: Relevante Rechtsvorschriften für die Entwicklung von PV-Diesel-Hybridanlagen zur Eigenstromversorgung .. 36
Tabelle 5: Relevante Verordnungen für die Entwicklung von PV-Diesel-Hybridanlagen für die Eigenstromversorgung 36
Tabelle 6: Gebührenordnung für die Beantragung einer Genehmigung für die Eigenstromversorgung ... 37
Tabelle 7: Vergleich der Stromgestehungskosten ... 43
Tabelle 8: Vergleich der Amortisationsdauern .. 44
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABP</td>
<td>Anchor Borrower Program (Förderprogramm der nigerianischen Zentralbank)</td>
</tr>
<tr>
<td>AEDC</td>
<td>Abuja Electricity Distribution Company (Stromvertriebsgesellschaft Abuja)</td>
</tr>
<tr>
<td>AUN</td>
<td>American University Yola (amerikanische Universität Yola)</td>
</tr>
<tr>
<td>BAS</td>
<td>BAS Consultants (BAS-Berater)</td>
</tr>
<tr>
<td>BMI</td>
<td>BMI Research (BMI-Studienabteilung)</td>
</tr>
<tr>
<td>CAP PLC</td>
<td>Chemical and Allied Products, PLC</td>
</tr>
<tr>
<td>CBN</td>
<td>Central Bank of Nigeria (nigerianische Zentralbank)</td>
</tr>
<tr>
<td>DisCo</td>
<td>Distribution Company of Nigeria (Stromvertriebsgesellschaft)</td>
</tr>
<tr>
<td>DUoS</td>
<td>Distribution Use of System (Nutzung eines Stromverteilsystems)</td>
</tr>
<tr>
<td>ECOWAS</td>
<td>Economic Community of West African States (Westafrikanische Wirtschaftsgemeinschaft)</td>
</tr>
<tr>
<td>EE</td>
<td>Erneuerbare Energien</td>
</tr>
<tr>
<td>EEDC</td>
<td>Enugu Electricity Distribution Company (Stromvertriebsgesellschaft Enugu)</td>
</tr>
<tr>
<td>EKEDC</td>
<td>Eko Electricity Distribution Company (Stromvertriebsgesellschaft Eko)</td>
</tr>
<tr>
<td>EPC</td>
<td>Engineering Procurement and Construction</td>
</tr>
<tr>
<td>EPIC</td>
<td>Electric Power Implementation Committee (Kommission für Elektrifizierung)</td>
</tr>
<tr>
<td>EPSRA</td>
<td>Electric Power Sector Reform Act (Gesetz zur Reform des Stromsektors)</td>
</tr>
<tr>
<td>ERGP</td>
<td>Economic Recovery and Growth Plan (Plan für Konjunktur und Wachstum)</td>
</tr>
<tr>
<td>EU</td>
<td>Europäische Union</td>
</tr>
<tr>
<td>FCT</td>
<td>Federal Capital Territory (Gebiet der Bundeshauptstadt)</td>
</tr>
<tr>
<td>FMPWH</td>
<td>Federal Ministry of Power, Works & Housing (Bundesministerium für Strom, Bau & Wohnungswesen)</td>
</tr>
<tr>
<td>GAIN</td>
<td>Global Alliance for Improved Nutrition (globale Allianz für eine bessere Ernährung)</td>
</tr>
<tr>
<td>BIP</td>
<td>Bruttoinlandsprodukt</td>
</tr>
<tr>
<td>GENCOs</td>
<td>Generation Companies of Nigeria (nigerianische Stromerzeuger)</td>
</tr>
<tr>
<td>IPP</td>
<td>Independent Power Producer</td>
</tr>
<tr>
<td>IBEDC</td>
<td>Ibadan Electricity Distribution Company (Stromvertriebsgesellschaft Ibadan)</td>
</tr>
<tr>
<td>IRENA</td>
<td>International Renewable Energy Agency (Internationale Agentur für erneuerbare Energien)</td>
</tr>
<tr>
<td>KADECO</td>
<td>Kaduna Electricity Distribution Company (Stromvertriebsgesellschaft Kaduna)</td>
</tr>
<tr>
<td>KEDCO</td>
<td>Kano Electricity Distribution Company (Stromvertriebsgesellschaft Kano)</td>
</tr>
<tr>
<td>LGA</td>
<td>Local Government Area (Gebiet einer lokalen Gebietskörperschaft)</td>
</tr>
<tr>
<td>MAN</td>
<td>Manufacturers Association of Nigeria (nigerianischer Industrieverband)</td>
</tr>
<tr>
<td>MOU</td>
<td>Memorandum of Understanding (Absichtserklärung)</td>
</tr>
<tr>
<td>MW</td>
<td>Megawatt</td>
</tr>
<tr>
<td>MYTO</td>
<td>Multi-Year Tariff Order</td>
</tr>
<tr>
<td>NAFDAC</td>
<td>National Food & Drugs Administration and Control (nationale Behörde für die Zulassung und Prüfung von Lebens- und Arzneimitteln)</td>
</tr>
<tr>
<td>NBET</td>
<td>Nigeria Bulk Electricity Trading (Gesellschaft zur Verwaltung des nigerianischen Strompools)</td>
</tr>
<tr>
<td>NBS</td>
<td>National Bureau of Statistics (nationales Amt für Statistik)</td>
</tr>
<tr>
<td>NEAEP</td>
<td>National Energy Efficiency Action Plan (nationaler Aktionsplan Energieeffizienz)</td>
</tr>
<tr>
<td>NEMSA</td>
<td>Nigerian Electricity Management Services Agency (nigerianische Agentur für Elektrizitätsmanagement)</td>
</tr>
<tr>
<td>NERC</td>
<td>Nigerian Electricity Regulatory Commission (nigerianische Kommission zur Regulierung des Stromsektors)</td>
</tr>
<tr>
<td>NIESI</td>
<td>Nigerian Electricity Supply Industry (nigerianische Stromversorgungsbranche)</td>
</tr>
<tr>
<td>NIAS</td>
<td>Nigerian Institute of Animal Science (nigerianisches Institut für Tierwissenschaften)</td>
</tr>
<tr>
<td>NIRSAL</td>
<td>Nigerian Incentive Based Risk Sharing System for Agriculture Lending (nigerianisches System für eine anreizbasierte Risikoteilung bei der Vergabe von Agrarkrediten)</td>
</tr>
<tr>
<td>NREAP</td>
<td>National Renewable Energy Action Plan (nationaler Aktionsplan für erneuerbare Energien)</td>
</tr>
<tr>
<td>NREEEP</td>
<td>National Renewable and Energy Efficiency Policy (nationale Strategie zur Förderung von erneuerbaren Energien und Energieeffizienz)</td>
</tr>
<tr>
<td>NSPRI</td>
<td>Nigerian Stored Products Research Institute (nigerianisches Forschungsinstitut für Lagerprodukte)</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation für wirtschaftliche Zusammenarbeit und Entwicklung</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Zusammensetzung</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>PET</td>
<td>Polyethylenterephthalat</td>
</tr>
<tr>
<td>PHCN</td>
<td>Power Holding Company of Nigeria (staatlicher Stromversorger)</td>
</tr>
<tr>
<td>PMA</td>
<td>Paint Manufacturers Association of Nigeria (Verband der nigerianischen Farbenhersteller)</td>
</tr>
<tr>
<td>PPA</td>
<td>Power Purchase Agreement (Strombezugsvertrag)</td>
</tr>
<tr>
<td>PSN</td>
<td>Pharmaceutical Society of Nigeria (nigerianische pharmazeutische Gesellschaft)</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaik</td>
</tr>
<tr>
<td>REA</td>
<td>Rural Electrification Agency (Behörde für die Elektrifizierung des ländlichen Raums)</td>
</tr>
<tr>
<td>REFIT</td>
<td>Renewable Energy Feed in Tariff (Einspeisetarif für Strom aus erneuerbaren Energien)</td>
</tr>
<tr>
<td>REMP</td>
<td>Nigeria Renewable Energy Master Plan (nigerianischer Masterplan für erneuerbare Energien)</td>
</tr>
<tr>
<td>REPG</td>
<td>Rural Electricity Policy Guidelines (Richtlinien für die Energieversorgung des ländlichen Raums)</td>
</tr>
<tr>
<td>RIFAN</td>
<td>Rice Farmers Association of Nigeria (Verband der nigerianischen Reiserzeuger)</td>
</tr>
<tr>
<td>ROI</td>
<td>Return on Investment (Investitionsrendite)</td>
</tr>
<tr>
<td>SHS</td>
<td>Small Home System (Heimsolarsystem)</td>
</tr>
<tr>
<td>TCN</td>
<td>Transmission Company of Nigeria (nigerianische Stromübertragungsgesellschaft)</td>
</tr>
<tr>
<td>TUoS</td>
<td>Transmission Use of System (Nutzung eines Stromübertragungssystems)</td>
</tr>
<tr>
<td>UVP</td>
<td>Umweltverträglichkeitsprüfung</td>
</tr>
<tr>
<td>WACC</td>
<td>Weighted Average Cost of Capital (gewichteter durchschnittlicher Kapitalkostensatz)</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization (Weltgesundheitsorganisation)</td>
</tr>
</tbody>
</table>
Zusammenfassung

Die vorliegende Studie bietet einen Überblick über die Eigenstromversorgung des produzierenden Gewerbes und der Agrarwirtschaft in Nigeria sowie die Möglichkeiten für Investitionen in PV-Diesel-Hybridanlagen für die Eigenstromversorgung. Gegenstand der Studie ist eine Analyse von acht Teilsektoren, in der die Herausforderungen und Chancen für den Einsatz von Eigenstromversorgungslosungen in der Agrarwirtschaft und im verarbeitenden Gewerbe diskutiert werden. Der Bericht besteht aus zwei Teilen:

i. aus einer Literaturrecherche, in der Sekundärdaten erhoben wurden und die einen Überblick über die Tätigkeit in den ausgewählten Teilsektoren bietet, und

ii. einer technischen Analyse, die die Erhebung von Primärdaten über den Energieverbrauch von drei Unternehmen innerhalb jedes Teilsektors zum Gegenstand hat.

Auf der Grundlage der so erhobenen Daten wurde bewertet, wie gut sich die einzelnen Teilsektoren für PV-Diesel-Hybridanlagen eignen. Die Studie richtet sich hauptsächlich an potenzielle Investoren und Projektentwickler, die sich für den Bau von PV-Diesel-Hybridanlagen zur Eigenstromversorgung in Nigeria interessieren.

Im Rahmen der technischen Analyse soll ermittelt werden, welche Möglichkeiten es für den Einsatz von PV-Diesel-Hybridkraftwerken in der Agrarwirtschaft sowie im verarbeitenden Gewerbe des Landes gibt. Konkret geht es darum festzustellen, welche der acht untersuchten Teilsektoren sich am besten für eine solche Stromversorgungslösung eignen.

Die meisten der betrachteten Unternehmen aus den beiden Sektoren (verarbeitendes Gewerbe und Agrarwirtschaft) gaben an, dass sie energieintensive Prozessschritte bei Tageslicht (zwischen 8.00 und 17.00 Uhr) durchführen. Daher kann davon ausgegangen werden, dass das am besten geeignete Hybridsystem möglichst viel Solarstrom erzeugt und mit einem Notstrom-Dieselandgenerator ausgestattet ist, um Zeiten mit geringer Sonneneinstrahlung überbrücken zu können. Außerdem sollte die Hybridanlage über eine kleine Batterie verfügen, die nachts (vom 18.00 bis 07.00 Uhr) die Sicherheitsbeleuchtung sowie die Überwachungseinrichtungen mit Strom versorgt. Mit diesem Anlagenkonzept ist gewährleistet, dass der größte Teil des von der Anlage erzeugten Stroms vollständig vom Abnehmer genutzt wird. Für die Zwecke der Finanzanalyse wird deshalb davon ausgegangen, dass mindestens 90 % des von der Anlage erzeugten Stroms vom Abnehmer bezahlt werden.

Das Ranking im Hinblick auf die Eignung für PV-Diesel-Hybridanlagen stellt sich für die Teilsektoren wie folgt dar:

1. Reisverarbeitung
2. Softdrinks & Mineralwasser
3. Futtermittelherstellung
4. Farben & verwandte Erzeugnisse
5. Arzneimittel
6. Kosmetik
7. Kühlagerhaltung
8. Schaumstoffherstellung
In dieser Studie werden Sekundärdaten aus einer Literaturrecherche mit Primärdaten, die durch Fragebögen und Be- suche vor Ort gewonnen wurden, miteinander kombiniert. Es ist jedoch zu beachten, dass die Datenerhebung in Nigeria, insbesondere im verarbeitenden Gewerbe, eine besondere Herausforderung darstellt, denn in der Regel geben die Unternehmen nur ungern betriebliche Informationen an Dritte heraus. So gaben alle 24 für die eingehende Analyse befragten Betriebe an, dass sie eine Veröffentlichung ihrer Antworten nicht wünschen. Infolgedessen enthält die vorliegende Studie für jedes befragte Unternehmen nur einen kurzen Überblick.

Die in dieser Studie vorgenommene Bewertung der einzelnen Teilsektoren spiegelt die bestmögliche Einschätzung der Berater auf der Grundlage der zur Verfügung stehenden Informationen wider.

Abbildung 1: Vergleich der Teilsektoren

Quelle: Eigene Darstellung BAS Associates Consulting (2019), Punktesystem, das sich aus der Makroanalyse des Subsektors (Marktvolumen, Exportanteil etc.) sowie der technischen Machbarkeit von Projekten innerhalb des Subsektors (Energieverbrauch, Betriebsprofil etc.) zusammensetzt, Details siehe Anhang 2: Analysematrix

In dieser Studie werden Sekundärdaten aus einer Literaturrecherche mit Primärdaten, die durch Fragebögen und Be- suche vor Ort gewonnen wurden, miteinander kombiniert. Es ist jedoch zu beachten, dass die Datenerhebung in Nigeria, insbesondere im verarbeitenden Gewerbe, eine besondere Herausforderung darstellt, denn in der Regel geben die Unternehmen nur ungern betriebliche Informationen an Dritte heraus. So gaben alle 24 für die eingehende Analyse befragten Betriebe an, dass sie eine Veröffentlichung ihrer Antworten nicht wünschen. Infolgedessen enthält die vorliegende Studie für jedes befragte Unternehmen nur einen kurzen Überblick.

Die in dieser Studie vorgenommene Bewertung der einzelnen Teilsektoren spiegelt die bestmögliche Einschätzung der Berater auf der Grundlage der zur Verfügung stehenden Informationen wider.
1. Einleitung

Eines der größten Probleme ist die Übertragung des Stroms, der in Anlagen und Kraftwerken mit einer installierten Gesamtleistung von 12,5 GW erzeugt wird. Derzeit kann das landesweite Stromnetz eine maximale Strommenge von 5 GW bewältigen, ohne dass es zu Netzausfällen kommt, was hauptsächlich auf technische und wirtschaftliche Verluste zurückzuführen ist (Henz und Schaefer, 2018).

In der vorliegenden Studie werden acht Teilsektoren aus der Agrarwirtschaft und dem verarbeitenden Gewerbe des Landes untersucht. Innerhalb der Agrarwirtschaft werden die Futtermittelherstellung, die Reisverarbeitung und die Kühlagerhaltung analysiert. Im verarbeitenden Gewerbe sind die Branchen Softdrinks & Mineralwasser, Farben & verwandte Erzeugnisse, Kosmetika, Arzneimittel und Schaumstoffherstellung Gegenstand der Betrachtung. Die Auswahl der acht Teilsektoren beruht auf ihrer Bedeutung für die nigerianische Volkswirtschaft und ihrem Gesamtbeitrag zum BIP des Landes.

2. Technische Studie
2. TECHNISCHE STUDIE

2.1 Ziel

2.2 Methodik
Zur Erreichung der für die Studie definierten Ziele wurde eine aus sechs Schritten bestehende Methodik umgesetzt. Im Rahmen der Analyse und Bewertung haben die Berater Primär- und Sekundärdaten herangezogen. Im Folgenden werden die einzelnen Schritte der Methodik beschrieben:

A. Literaturstudie
Für jeden Teilsektor wurde eine allgemeine Marktanalyse zur Ermittlung der teilspektrospezifischen Merkmale durchgeführt. So wurden unter anderem das Marktvolumen (Gesamtumsatz), der Exportanteil sowie die Zahl der Beschäftigten ermittelt. Darüber hinaus wurde bewertet, wie sich die (aufsichts-)rechtlichen Rahmenbedingungen auf den potenziellen Einsatz von PV-Diesel-Hybridanlagen auswirken. Diese Bewertung erfolgte u. a. durch Recherchen in Online-Publikationen, Zeitungen, Zeitschriften, Berichten, Richtlinien, Gesetzen und anderen Rechtsvorschriften. Im Rahmen der Literaturstudie wurden die folgenden Quellen, herangezogen:

- Website des National Bureau of Statistics (nigerianisches Amt für Statistik)
- True Cost of Electricity: Comparison of Costs of Electricity Generation in Nigeria, 2017
- Veröffentlichungen der Nigerian Electricity Regulatory Commission (NERC; nigerianische Kommission zur Regulierung des Stromsektors)

B. Einholung von Informationen per Telefon und E-Mail
Die Berater haben aus dem Unternehmensverzeichnis der Manufacturers Association of Nigeria (MAN; nigerianischer Industrieverband) als relevant erachtete Unternehmen aus den verschiedenen Teilsektoren vorausgewählt und per E-Mail und Telefon kontaktiert. Anschließend sind die Berater mit den jeweils zuständigen Ansprechpartnern in den Unternehmen in einem Dialog getreten. Vor dem Besuch des technischen Experten wurden per E-Mail und Telefon Kontakte zu Unternehmen geknüpft, die Interesse an einer Teilnahme an der Studie hatten.

C. Befragung
Die Ansprechpartner in den vorausgewählten Unternehmen haben per E-Mail einen Fragebogen erhalten, den sie ausgefüllt und an das technische Expertenteam zurückgeschickt haben. Mit den Fragebögen wurden die allgemeinen betrieblichen und technischen Merkmale des jeweiligen Betriebs abgefragt. Inbesondere wurde danach gefragt, inwiefern Flächen für die Errichtung von PV-Anlagen zur Verfügung stehen, wie hoch der tägliche Strombedarf ist, welchen Stromtarif das Unternehmen derzeit für Netzstrom bezahlt, ob weitere Stromquellen genutzt werden, wie hoch die Spitzenlast des Betriebs ist und welche Kosten für die Stromerzeugung mithilfe von Dieselgeneratoren anfallen.

D. Besuch vor Ort
Um die mithilfe der Fragebögen erhobenen Daten zu überprüfen und sich zu vergewissern, ob sich die genannten Flächen für PV-Anlagen eignen, haben die Berater die einzelnen Unternehmensstandorte besucht. Ferner wurde bei dem Besuch zu Vergleichszwecken ermittelt, welche Ähnlichkeiten und Unterschiede zu den anderen Betrieben bestehen. Außerdem haben die Berater mit ihren Ansprechpartnern in den Unternehmen über die Antworten auf den Fragebögen gesprochen, um sicherzustellen, dass alle Aspekte vollständig erfasst wurden. Soweit dies zulässig war, wurden Bilder von interessanten Details aufgenommen.
E. Technische und Finanzanalyse

F. Quantitative Analyse zur Bewertung und zum Vergleich der Teilsektoren

2.3 Quantitativer Vergleich

Um zu ermitteln, wie sinnvoll der Bau von PV-Diesel-Hybridanlagen in den einzelnen Teilsektoren ist, wurde eine quantitative Analysematrix entwickelt. Diese Matrix ermöglicht auf der Grundlage der gelieferten Informationen einen schnellen quantitativen Vergleich. Dabei wurden in dem Modell die beiden folgenden Aspekte betrachtet:

1. Makroanalyse des Teilsektors

Auf der Grundlage der Literaturstudie für jeden Teilsektor wurden fünf Indikatoren miteinander verglichen und gewichtet. 50 Prozent der Gesamtgewichtung entfallen auf die Makroanalyse. Die Indikatoren im Einzelnen:

- Marktvolumen bzw. Anteil am BIP
- Exportanteil innerhalb des Teilsektors
- technischer Entwicklungsstand innerhalb des Teilsektors
- staatliche Förderinstrumente für den Teilsektor
- Beherrschung des Teilsektors durch große und mittelständische Unternehmen

2. Technische Machbarkeit von Projekten innerhalb der Teilsektoren

Anhand der Antworten aus den Fragebögen und der bei den Standortbegehungen gewonnenen Erkenntnisse wurden sechs Indikatoren miteinander verglichen und bewertet. 50 % der Gesamtgewichtung entfallen auf die technische Analyse. Die Indikatoren im Einzelnen:

- Energieintensität (kWh/m²)
- Saisonalität des Strombedarfs
- tägliches Betriebsprofil
- Anteil des täglichen Strombedarfs, der mit Dieselgeneratoren gedeckt wird, gegenüber dem Anteil des Strombedarfs, der aus dem Stromnetz gedeckt wird
- zur Verfügung stehende Bioenergiequellen

Anhand der Erkenntnisse aus der Schreibtischstudie, der Ergebnisse der Fragebögen sowie der Einschätzung des Beraters wurde jede Unterkategorie gewichtet und auf einer Skala von eins (schlecht) bis zehn (hervorragend) bewertet.

2. TECHNISCHE STUDIE

1 Makroanalyse des Teilsektors

<table>
<thead>
<tr>
<th>Gewichtung</th>
<th>Relevanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Marktvolumen</td>
<td>Ein größeres Marktvolumen ist ein Hinweis auf eine dynamischere Entwicklung des Teilsektors, der offensichtlich in der Lage ist, seine Stromgestehungskosten zu decken. Das Marktvolumen wird in Euro angegeben.</td>
</tr>
<tr>
<td>1.2 Exportanteil innerhalb des Teilsektors</td>
<td>Ein hoher Exportanteil kann die Bereitschaft der Unternehmen beeinflussen, Projekte im Bereich der erneuerbaren Energien zu realisieren, um nachweislich umweltfreundlicher zu werden. Außerdem zeigt ein hoher Exportanteil, dass die Unternehmen in der Lage sind, Devisen zu erwirtschaften, die wiederum zur Deckung der Stromgestehungskosten verwendet werden können.</td>
</tr>
<tr>
<td>1.3 Stand der Technik innerhalb des Teilsektors</td>
<td>Eine fortgeschrittene technische Entwicklung eines Teilsektors zeigt, dass ggf. die Bereitschaft besteht, neue, ökologischere Energieversorgungslösungen einzuführen.</td>
</tr>
<tr>
<td>1.4 staatliche Anreize für den Teilsektor</td>
<td>Mit starker staatlicher Unterstützung haben die Unternehmen bessere Möglichkeiten, Mittel für erneuerbare Energien zu mobilisieren. Betriebe in staatlich geförderten Teilsektoren haben einen besseren Zugang zu günstigen Finanzierungslösungen und besitzen eine höhere Liquidität, sodass sie eher in der Lage sind, PV-Diesel-Hybridanlagen zur Eigenstromversorgung zu errichten.</td>
</tr>
<tr>
<td>1.5 Beherrschung des Teilsektors durch große und mittelständische Unternehmen</td>
<td>Wenn ein Teilsektor von großen und mittelständischen Unternehmen beherrscht wird, ist dies ein Hinweis darauf, dass es den Betrieben leichter fällt, zum Aufbau einer umweltfreundlichen Energieversorgung Kapital im Ausland aufzunehmen. Von einer Beherrschung durch große und mittelständische Unternehmen wird ausgegangen, wenn ein Teilsektor einen höheren Anteil an börsennotierten Unternehmen aufweist.</td>
</tr>
</tbody>
</table>

2 Technische Machbarkeit von Projekten innerhalb des Teilsektors

<table>
<thead>
<tr>
<th>Gewichtung</th>
<th>Relevanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Energieverbrauch pro Flächeneinheit (kWh/m²)</td>
<td>Ein hoher Energieverbrauch pro Flächeneinheit deutet darauf hin, dass die Möglichkeiten für die Installation von PV-Anlagen, insbesondere Aufdach-PV-Anlagen, räumlich beschränkt sind. Diese Kennzahl ist ein Indikator für das Potenzial einer PV-Anlage im Hinblick auf die Deckung des Strombedarfs von Unternehmen aus dem jeweiligen Teilsektor.</td>
</tr>
<tr>
<td>2.2 Saisonalität des Strombedarfs</td>
<td>Teilsektoren mit saisonalen Schwankungen gelten als weniger geeignet für PV-Diesel-Hybridanlagen zur Eigenstromversorgung.</td>
</tr>
<tr>
<td>2.3 tägliches Betriebsprofil</td>
<td>Teilsektoren, in denen die meisten Produktionsanlagen tagsüber betrieben werden, eignen sich in der Regel besser für den Einsatz von PV-Diesel-Hybridanlagen.</td>
</tr>
<tr>
<td>2.4 Anteil des täglichen Strombedarfs, der mit Dieselgeneratoren gedeckt wird gegenüber dem Anteil des Strombedarfs, der aus dem Stromnetz gedeckt wird</td>
<td>Eine hohe Abhängigkeit von Dieselgeneratoren bedeutet, dass sich eine PV-Diesel-Hybridanlage mit hoher Wahrscheinlichkeit finanziell lohnt. Umgekehrt ist eine zuverlässige Stromversorgung aus dem nationalen Stromnetz ein Hinweis darauf, dass sich eine PV-Diesel-Hybridanlage zur Eigenstromversorgung wahrscheinlich nicht lohnt.</td>
</tr>
<tr>
<td>2.5 Andere umweltfreundliche Energiequellen</td>
<td>Wenn weitere umweltfreundliche Energiequellen zur Verfügung stehen, kann dies dazu führen, dass die Betriebe des betreffenden Teilsektors weniger Dieselkraftstoff verwenden und verstärkt z. B. auf Photovoltaik setzen.</td>
</tr>
</tbody>
</table>

Quelle: Eigene Darstellung BAS Associates Consulting (2019)
2.4 Wesentliche Annahmen

2.4.1 Technische Annahmen

Bei der Beurteilung, inwieweit PV-Diesel-Hybridanlagen in den einzelnen Teilsektoren realisierbar sind, wurden folgende Annahmen zugrunde gelegt:

i. Betriebsgröße

Die für jeden der Teilsektoren besuchten Unternehmen wurden in drei Kategorien unterteilt, nämlich in kleine, mittelständische und große Unternehmen. Das Unterteilungskriterium war dabei der Spitzenstrombedarf des Standorts, wie er im ausgefüllten Fragebogen angegeben war.

ii. Derzeitiger Energiebedarf

Die Angaben zum Energiebedarf, auf denen die Analyse beruht, wurden den ausgefüllten Fragebögen der Betriebe entnommen.

iii. Technologie für die Energiewende

Die Technologie zur Umstellung auf erneuerbare Energien umfasst PV-Anlagen, die zusammen mit den vorhandenen Dieselgeneratoren eingesetzt werden.

iv. Geschätzter Spitzenbedarf

Für den Spitzenbedarf wurden die Angaben aus den Fragebögen zugrunde gelegt.

v. Potenzial für die Eigenstromerzeugung

Im Rahmen der Analyse wurde ermittelt, welches Potenzial die einzelnen Betriebe für die Eigenstromversorgung bieten. Alle in dieser Studie untersuchten Unternehmen werden derzeit mit Strom aus Dieselgeneratoren versorgt, was ein Hinweis darauf ist, dass eine Eigenstromversorgung technisch möglich ist.

2.4.2 Finanzielle Annahmen

Anhand des Nettobarwerts, der internen Rendite und der Amortisationszeit wurde eine grundlegende Finanzanalyse durchgeführt, um für jeden Teilsektor zu ermitteln, inwieweit eine Lösung zur Eigenstromversorgung wirtschaftlich sinnvoll ist. Dabei wurde von folgenden Annahmen ausgegangen:

i. Wechselkurs

Allen finanziellen Berechnungen für dieses Projekt wurde ein Wechselkurs von 1 EUR : 403 NGN zugrunde gelegt.

ii. Spezifische Ausrüstungskosten/Kosten der installierten Leistung (EUR/kW)

In dieser Studie werden die Kosten der installierten Leistung einer PV-Diesel-Hybridanlage mit 1.200 EUR/kW angesetzt (Roche, Ude, und Ofoegbu, 2017); diese Einschätzung entspricht den Angaben der International Renewable Energy Agency (IRENA; internationale Agentur für erneuerbare Energien) für die Region. Die Kosten der installierten Leistung dürften sogar noch niedriger ausfallen, da keine Flächen gekauft werden müssen, denn die meisten besuchten Standorte verfügen bereits über genügend Land bzw. ausreichende Dachflächen für die Errichtung einer PV-Anlage, deren Leistung mindestens 50 % der Leistung der bisher eingesetzten Dieselgeneratoren entsprechen würde. Zwar sind für jeden Teilsektor (bis hin zur Produktionsstruktur der einzelnen Unternehmen) unterschiedliche Leistungsparameter zu berücksichtigen, doch stellt diese Zahl eine hinreichende Schätzung für den Vergleich mit derzeit eingesetzten Diesel-/Gaskraftwerken dar.

iii. Betriebs- und Wartungskosten

Die Betriebs- und Wartungskosten einer PV-Diesel-Hybridanlage umfassen die routinemäßige Wartung, den Austausch von Kleinteilen zur Maximierung der Stromausbeute sowie die Kosten des für den Betrieb der Dieselgeneratoren benötigten Dieselkraftstoffs. Betrieb und Wartung haben sich zu einem eigenständigen Segment innerhalb der Solarbranche entwickelt, und alle Branchenakteure sind sich darin einig, dass qualitativ hochwertige Betriebs- und Wartungsmaßnahmen Risiken mindern, die Stromgestehungskosten sowie die Kosten für Purchase Power Agreements (PPAs; Strombezugs-
verträge) verringern und sich positiv auf den Return on Investment (ROI, Investitionsrendite) auswirken. Im Rahmen der Finanzanalyse wurden die fixen und variablen Betriebs- und Wartungskosten mit 20,00 EUR/kW/Jahr bzw. mit 0,02 EUR/kWh angesetzt. In den variablen Betriebs- und Wartungskosten sind die beim Einsatz von Notstromgeneratoren anfallenden Kosten für Dieselkraftstoff von 0,27 EUR/Liter enthalten. In der Regel erhöhen sich die Betriebs- und Wartungskosten jedes Jahr um 5 %, um zu berücksichtigen, dass mit fortschreitender Nutzungsduer der Anlage immer mehr Teile ausgetauscht werden müssen. Da die geplante Nutzungsdauer jedoch nur zehn Jahre beträgt, wurde diese Kostendynamik aus der Analyse ausgeklammert und stattdessen in den fixen Betriebs- und Wartungskosten berücksichtigt.

iv. Gewichteter durchschnittlicher Kapitalkostensatz

v. Netzstromkosten

vi. Laufzeit von Strombezugsverträgen

Die Verfasser der Studie gehen davon aus, dass die Betriebe ein PPA über die Abnahme des von der PV-Diesel-Hybridanlage erzeugten Stroms mit einer Laufzeit von zehn Jahren abschließen.
2.5 Stromerzeugung durch Photovoltaik

2.5.1 Anlagen zur Eigenstromversorgung

Gemäß der Definition der NERC gelten solche Systeme als Anlagen zur Eigenstromversorgung, die netzunabhängig Strom erzeugen, der vollständig vom Anlagenbetreiber verbraucht wird, und die eine installierte Leistung von mehr als 1 MW (Megawatt) aufweisen, wobei keine Obergrenze gilt. Anlagen zur Eigenstromversorgung sind in Nigeria sehr verbreitet, insbesondere bei Betrieben, die Agrarergebnisse verarbeiten. Schätzungen zufolge haben die in Nigeria betriebenen Anlagen zur Eigenstromversorgung eine kumulierte Leistung von acht bis 14 GW.

2.5.2 Speichersysteme

3. Überblick über die Teilsektoren
3.1 Agrarwirtschaft

In den letzten Jahren hat sich das Land darum bemüht, die Entwicklung der erdölfreien Wirtschaftszweige zu stärken. Dadurch erleben Teile der Agrarwirtschaft wieder einen Aufschwung. Die Politik der Regierung konzentriert sich auf die Förderung von Investitionen und Wachstum in diesem Teilsektor sowie auf die Schaffung eines günstigen Umfelds für die Bauern. Die Fördermaßnahmen zielen in erster Linie darauf, den Beitrag der Landwirtschaft zum BIP zu steigern, für die Bauern unterstützt, die mit 194 so genannten Ankerunternehmen arbeiten. Überdies konnten auf diese Weise 2,8 Mio. Arbeitsplätze direkt und weitere 8,4 Mio. Arbeitsplätze indirekt geschaffen werden (CBN, 2015).

3.1.1 Futtermittelherstellung

Die zusätzliche Nachfrage wird voraussichtlich dazu führen, dass die Produktionsmengen steigen, während sich die Preise rückläufig entwickeln. Mit den zusätzlichen Produktionskapazitäten erhöht sich natürlich der Stromverbrauch, sodass weitere Stromerzeugungskapazitäten erschlossen werden müssen.

Die Finanzberichte der großen Futtermittelhersteller belegen, dass die Branche derzeit wächst und sich im Aufschwung befindet. So meldete beispielsweise die Livestock Feeds PLC für 2018 einen Umsatz von 8,2 Mio. EUR, was einer Steigerung von 22% gegenüber dem Vorjahr entspricht. Auch Flour Mills of Nigeria PLC wies für 2018 einen Jahresumsatzanstieg um 58% gegenüber dem Vorjahresniveau auf 25,8 Mio. EUR aus.

Eine typische Futtermittelproduktion umfasst folgende Maschinen und Anlagen:
- eine Kippstation am Eingang zur Hammermühle
- eine Hammermühle
- eine Mischvorrichtung
- eine Pelletieranlage (optional)
• einen Brecher (optional) sowie den Entladebereich

Die Produktionsanlage kann zusätzlich mit verschiedenen Behältern ausgestattet sein.

Außerdem liegen keine ausreichenden, öffentlich zugänglichen Daten zum Anteil der Futtermittelindustrie am BIP des Landes vor.

Die Futtermittelindustrie bietet jedoch ein großes Potenzial, was nicht zuletzt dadurch belegt wird, dass in den letzten fünf Jahren verschiedene in- und ausländische Unternehmen (darunter Olam, Livestock Feeds Plc and Flour Mills of Nigeria) in die Futtermittelproduktion investiert haben.

3.1.2 Reisverarbeitung

Reis gehört zu den wichtigsten Grundnahrungsmitteln der Welt. Nigeria besitzt das Potenzial, seinen Bedarf an Reis aus eigener Produktion zu decken und gleichzeitig für den Export zu produzieren. Im Branchenverzeichnis der MAN sind sowohl in der Kategorie Mehl und Getreidemühlen als auch in der Kategorie Reis verschiedene Reismühlen erfasst.

Der Prozess der Reisverarbeitung umfasst die Vorreinigung, die Entfernung der Spelzen, das Schleifen, Aufhellen, Sortieren, Mischen und Polieren sowie das Verpacken nach Gewicht. Zu den wesentlichen Maschinen eines Reisverarbeitungsbetriebs gehören:

- die Reinigungsmaschine
- die Entsteinungsmaschine
- die Schälmaschine
- der Paddy-Abscheider
- die Maschine zur Reisaufhellung
- die Reispoliermaschine
- die Sortiermaschine
- der Getreidetrockner
- die Wiege- und Verpackungsmaschine
- Beleuchtungseinrichtungen

3.1.3 Kühllagerhaltung

Lebens- und Arzneimittel sind für die Bevölkerung unverzichtbar. Erst mithilfe von Kühllagern ist es möglich, diese Produkte über größere Entfernungen zu liefern, sie ohne Qualitätseinbußen über einen längeren Zeitraum zu lagern und gleichzeitig die Nachernteverluste deutlich zu reduzieren.

Die meisten Kühlläger in Nigeria werden hauptsächlich für die Lagerung von Tiefkühlprodukten wie Geflügel oder Fisch genutzt und sind zur Ergänzung der unzuverlässigen Stromversorgung aus dem landesweiten Stromnetz auf Dieselgeneratoren angewiesen. Da diese Form der Stromversorgung die Betriebskosten deutlich erhöht, bieten sich hier ausgezeichnete Möglichkeiten für die Nutzung von erneuerbaren Energien.

Cold Hubs betreibt ein modulares, solarstrombetriebenes Kühllagerhaus, in dem netzstromunabhängig verderbliche Lebensmittel gelagert werden können.
Es liegen keine Daten über den Anteil des Teilsektors am BIP vor, da das NBS die Geschäftstätigkeit der kleinen Kühlagerhausbetreiber bei der Ermittlung des BIP nicht berücksichtigt. Das Beschäftigungspotenzial des Teilsektors lässt sich jedoch aus den Daten zu den 244 Betrieben (mit jeweils zehn bis 15 Beschäftigten) ableiten, die von der Global Alliance for Improved Nutrition (GAIN; globale Allianz für eine bessere Ernährung) in der Erhebung berücksichtigt wurden.

Im Rahmen der GAIN-Studie wurde festgestellt, dass allein im Bundesstaat Lagos 191 Kühlkettenexperten und Kälte-techniker, 110 Verkäufer von Kühlagerkapazitäten und zehn Kühlgerätehersteller tätig sind.

3.2 Verarbeitendes Gewerbe

Das NBS unterteilt das verarbeitende Gewerbe in dreizehn Teilbereiche:

1. Ölraffination
2. Zementherstellung
3. Lebensmittel, Getränke und Tabakwaren
4. Textilien, Bekleidung und Schuhe
5. Holz und Holzerzeugnisse
6. Zellstoff und Papiererzeugnisse
7. Chemische und pharmazeutische Erzeugnisse
8. Nichtmetallische Erzeugnisse
9. Kunststoff- und Gummierzeugnisse
10. Elektrische und elektronische Produkte
11. Grundmetalle; Eisen und Stahl
12. Kraftfahrzeuge und Montage
13. Sonstige
Das verarbeitende Gewerbe ist ein wichtiger Wachstumsstreiber der nigerianischen Wirtschaft, dessen Bedeutung für die wirtschaftliche Entwicklung mit dem jüngsten Rückgang des Ölpreises weiter zugenommen hat.

Das verarbeitende Gewerbe hat sich in den letzten Jahren gut entwickelt, denn dank der politischen Initiativen und Anreize der Regierung nehmen die Investitionen in diesem Sektor zu.

Außerdem hat die Regierung in ihrem Economic Recovery and Growth Plan (ERGP; Plan für Konjunktur und Wachstum) den Schwerpunkt speziell auf die Förderung von kleinen und mittleren Unternehmen gelegt. Mit dem ERGP will die Regierung für stabile makroökonomische Rahmenbedingungen sorgen, die Verkehrsinfrastruktur ausbauen, die Ernährungssicherheit verbessern und Fortschritte auf dem Gebiet der Stromversorgung und der Energieeffizienz herbeiführen.

2018 entfielen 9,75% (rund 8,5 Mrd. EUR) des nominalen Bruttoinlandsprodukts (BIP) und 9,20% (8 Mrd. EUR) des realen BIP auf das verarbeitende Gewerbe. Im letzten Quartal 2018 legte der Sektor um 2,35% (rund 2 Mrd. EUR) zu. Im entsprechenden Vorjahreszeitraum hatte das Wachstum nur 0,14% (1,2 Mrd. EUR) betragen. Insgesamt belief sich der Anteil des verarbeitenden Gewerbes am BIP 2018 auf 9,3% (rund 8,1 Mrd. EUR) (National Bureau Of Statistics, 2018).

In den letzten Jahren hat sich gezeigt, dass das verarbeitende Gewerbe großes wirtschaftliches Potenzial bietet, denn es herrscht eine starke Nachfrage nach Konsumgütern. Allerdings stehen der Entwicklung des Sektors mehrere Herausforderungen entgegen, nämlich die unzureichende Infrastruktur, die unzuverlässige Stromversorgung sowie Preischocks bei den benötigten landwirtschaftlichen Roh- und Ausgangsstoffen.

2018 entfielen 9,75% (rund 8,5 Mrd. EUR) des nominalen Bruttoinlandsprodukts (BIP) und 9,20% (8 Mrd. EUR) des realen BIP auf das verarbeitende Gewerbe. Im letzten Quartal 2018 legte der Sektor um 2,35% (rund 2 Mrd. EUR) zu. Im entsprechenden Vorjahreszeitraum hatte das Wachstum nur 0,14% (1,2 Mrd. EUR) betragen. Insgesamt belief sich der Anteil des verarbeitenden Gewerbes am BIP 2018 auf 9,3% (rund 8,1 Mrd. EUR) (National Bureau Of Statistics, 2018).

Weiter heißt es in dem Bericht, dass im selben Jahr 1,98 Mio. Liter Alkohol verkauft wurden, während sich der Absatz von Milchprodukten auf 147 Tonnen und der Verbrauch von abgefülltem Wasser auf 36,08 Mio. Liter belief.

3.2.2 Farben und verwandte Erzeugnisse

Der Markt ist durch zahlreiche kleinere, wenig strukturierte Produktionsbetriebe gekennzeichnet. Gleichzeitig entfallen 60–65 % des Marktvolumens auf den strukturierten Markt, wobei rund 80 % des Jahresumsatzes der Branche auf Dekorfarben (das größte Marktsegment) entfallen. Mit 2,8 Litern pro Kopf ist der Farbverbrauch in Nigeria nach wie vor niedrig; zum Vergleich: In Südafrika beträgt der Verbrauch 5,7 Liter pro Kopf. Dies ist auf eine unzureichende Branchenregulierung und fehlende Lobbyarbeit zurückzuführen.

Das Potenzial des Teilsektors wird aus dem Jahresumsatz der größten Unternehmen ersichtlich:

- Berger Paints: Jahresumsatz 7,4 Mio. EUR (Berger Paints Plc, 2018)

Das Beschäftigungspotenzial des Teilsektors ist schwer einzuschätzen. Aus den Websites der großen Hersteller geht hervor, dass diese bis zu 10.000 Mitarbeiter haben; ein typischer Kleinproduzent beschäftigt dagegen nicht mehr als fünf bis zehn Personen.
3.2.3 Kosmetika

Das Marktforschungsunternehmen Euromonitor International schätzt das Volumen der Kosmetikindustrie im Nahen Osten und Afrika auf rund 22,5 Mrd. EUR. Prognosen zufolge dürfte der Markt in den nächsten vier Jahren jährlich um 6,4 % wachsen. Damit sind der Nahe Osten und Afrika die Weltregion, in der der Markt für Kosmetik- und Körperpflegeprodukte am schnellsten wächst.

- PZ Cussons Nigeria Plc: Jahresumsatz 198,4 Mio. EUR
- Unilever Nigeria Plc: Jahresumsatz 223,5 Mio. EUR
- Zaron Cosmetics International: Jahresumsatz 1,4 Mio. EUR

3.2.4 Arzneimittel

Der nigerianische Pharmasektor wächst weiter, da er zunehmend nach internationalen Normen und Standards arbeitet. Im entsprechenden Branchenverzeichnis der MAN werden 131 Unternehmen aufgeführt, von denen die meisten ihren Sitz im Bundesstaat Lagos haben.

Die National Food & Drugs Administration and Control (NAFDAC; nationale Behörde für die Zulassung und Prüfung von Lebens- und Arzneimitteln) berichtete 2018, dass immer mehr nigerianische Arzneimittelhersteller ihre Produktion modernisieren, um eine Zertifizierung der World Health Organization (WHO; Weltgesundheitsorganisation) zu erhalten, mit der sie ihre Arzneimittel exportieren können.

2010 haben sechs nigerianische Unternehmen von der Weltgesundheitsorganisation eine Zertifizierung für die Lieferung von antiretroviralen Medikamenten sowie von Arzneimitteln zur Behandlung von Malaria und Tuberkulose erhalten.

Das enorme wirtschaftliche Potenzial dieses Teilsektors spiegelt sich in den Umsatzzahlen der drei größten Arzneimittelhersteller wider:

- **Glaxo SmithKline**: Jahresumsatz 134,8 Mio. EUR (2014)
- **Fidson Healthcare**: Jahresumsatz 36,7 Mio. EUR
- **May & Baker**: Jahresumsatz 32,2 Mio. EUR

Trotz dieser positiven Entwicklung wird die Ausfuhr von Arzneimitteln nach wie vor durch die unzureichenden Produktionsverfahren der nigerianischen Pharmahersteller gebremst. Die anhaltenden Probleme mit der unzuverlässigen Stromversorgung sowie die hohen Kosten für die Eigenstromversorgung führen dazu, dass die nigerianischen Arzneimittelhersteller international nicht wettbewerbsfähig sind.

Die meisten Rohstoffe für die Herstellung von Arzneimitteln sowie die Produktionsanlagen müssen eingeführt werden, was die internationale Wettbewerbsfähigkeit der nigerianischen Unternehmen weiter belastet. In den meisten Fällen besteht der erste Schritt des Herstellungsprozesses in der Verarbeitung bzw. Vorbereitung von Rohstoffen. Dadurch werden Wirkstoffe, Additive oder Hilfsstoffe für pharmazeutische Formulierungen gewonnen.
3. ÜBERBLICK ÜBER DIE TEILSEKTOREN

Aus den Roh- und Zwischenstoffen werden schließlich Arzneimittel in Form von Tabletten, Kapseln und Injektionen hergestellt.

Laut BMI-Bericht beschäftigte die nigerianische Pharmabranche 2017 22.000 Personen, während die Pharmaceutical Society of Nigeria die Zahl der registrierten Apotheker mit knapp über 21.000 angibt.

Es liegen keine zuverlässigen Daten zu EE- oder Energieeffizienzprojekten in diesem Teilsektor vor. Nach Angaben der Pharmaceutical Society of Nigeria entfallen 0,25 % des nigerianischen BIP auf die Pharmaindustrie.

3.2.5 Schaumstoffherstellung

Im Branchenverzeichnis der MAN sind 37 nigerianische Schaumstoffhersteller (PU-Schaum für Matratzen und Möbel) verzeichnet, die in kleinen, mittleren und großen Mengen Polyurethansaum produzieren. In den meisten frei verfügbaren Quellen heißt es jedoch, dass der nigerianische Markt für Schaumstoffe von zwei großen Unternehmen beherrscht wird, nämlich Mouka Foam und Vitafoam. Auch die Foam Manufacturers Group, der zur MAN gehörende Dachverband der nigerianischen Schaumstoffhersteller, gibt an, dass der Teilsektor von wenigen Marktteilnehmern geprägt ist.

Dabei hat der Unternehmenserfolg von Mouka Foam und Vitafoam jedoch nicht dazu geführt, dass die Branche insgesamt gewachsen ist, so dass der Wettbewerb zwischen den Herstellern sehr intensiv ist. Gleichzeitig haben die Unternehmen mit Produktfalschungen, der anhaltend unzuverlässigen Stromversorgung aus dem nationalen Stromnetz, steigenden Rohstoffkosten und einer allgemein unzulänglichen Infrastruktur zu kämpfen. Die meisten Schaumstoffhersteller setzen zur Gewährleistung der Stromversorgung ihrer Produktionsanlagen auf Dieselgeneratoren.

Im MAN-Branchenverzeichnis wird nicht zwischen kleinen, mittleren und großen Unternehmen differenziert. Außerdem gibt es keine belastbaren, öffentlich zugänglichen Daten, die eine Aussage über die Größe der Hersteller erlauben würden.

Auch ist es schwierig, den Anteil des Teilsektors am BIP des Landes zu schätzen, da das NBS lediglich Daten für das gesamte verarbeitende Gewerbe liefert (BIP-Anteil von 9,3 % für 2018; NBS, 2018), nicht jedoch für einzelne Teilsektoren.
4. Rechtlicher und regulatorischer Rahmen für die Eigenstromversorgung in Nigeria
4. RECHTLICHER UND REGULATORISCHER RAHMEN FÜR DIE EIGENSTROMVERSORGUNG IN NIGERIA

33

4. RECHTLICHER UND REGULATORISCHER RAHMEN FÜR DIE EIGENSTROMVERSORGUNG IN NIGERIA

Laut der NERC bieten sieben Teilsektoren der Stromerzeugung wirtschaftliche Chancen. Eine davon ist die Eigenstromversorgung. Im Allgemeinen gibt es in Nigeria vier klar voneinander abgrenzbare Stromerzeugungsmodelle:

1. übertragungsbasierte netzgebundene Stromerzeugung
2. integrierte Stromerzeugung
3. netzferne Stromerzeugung
4. Eigenstromversorgung

In diesem Abschnitt werden der derzeitige Stand der Eigenstromversorgung sowie der rechtliche und regulatorische Rahmen dargestellt, innerhalb dessen die Verhaltensregeln für Stakeholder festlegt werden. Die Eigenstromversorgung wird rechtlich in der NERC (Captive Permit) Regulation 2008 (die Verordnung der NERC von 2008 über die Eigenstromversorgung; die „Verordnung“) geregelt.

4.1 Eigenstromversorgung

Der Begriff Eigenstromversorgung wird mitunter als Synonym für die integrierte Stromerzeugung verwendet. In Nigeria ist dies jedoch nicht der Fall. In der Verordnung wird klar definiert, was unter dem Konzept Eigenstromversorgung zu verstehen ist. Laut der NERC bezeichnet Eigenstromversorgung die Erzeugung von mehr als 1 MW Strom zum Zwecke des Verbrauchs durch den Erzeuger, wobei der Strom vom Erzeuger selbst verbraucht und nicht an Dritte verkauft wird.

Gemäß der behördlichen Definition muss ein Stromerzeuger, damit er für eine Genehmigung für die Erzeugung von Strom für den Eigenbedarf in Betracht kommt, die folgenden miteinander verbundenen Merkmale aufweisen:

- Die erzeugte Leistung muss 1 MW überschreiten.
- Der Zweck der Erzeugung muss der Eigengebrauch durch den Erzeuger sein.
- Der für den Eigenbedarf erzeugte Strom darf nicht an Dritte verkauft werden.

4.2 Einholung von Genehmigungen

Ausnahmen innerhalb der Ausnahme

F: Was passiert, wenn ein Genehmigungsinhaber einen Stromüberschuss erzeugt?

a. Abnehmer, die in einem Monat mindestens zwei MW pro Stunde verbrauchen und an eine mit einem Zähler ausgestattete 11-kV- oder 33-kV-Abnahmestelle in einem Verteilernetz oder an einen Vertriebslizenznehmer im Rahmen eines DUoS-Vertrags (Vertrag über die Nutzung eines Verteilersystems) angeschlossen sind.

b. Abnehmer, deren Verbrauch monatlich mehr als 2 MW pro Stunde beträgt und die im Rahmen eines TUoS-Vertrags (Vertrag über die Nutzung eines Übertragungssystems) direkt an eine mit einem Zähler ausgestattete 33-kV-Abnahmestelle im Übertragungsnetz angeschlossen sind.

c. Abnehmer, deren Mindestverbrauch über einen Zeitraum von einem Monat mehr als zwei MW pro Stunde beträgt, die direkt an die Messanlage eines Erzeugungsunternehmens angeschlossen sind und mit dem für den Betrieb am jeweiligen Standort zugelassenen Vertriebslizenznehmer eine bilaterale Vereinbarung über den Bau und Betrieb einer Verteilungsleitung getroffen haben.

Weniger als 1 MW überschüssiger Strom

Wenn der an den Abnehmer abzugebende überschüssige Strom weniger als 1 MW beträgt, ist eine schriftliche Zustimmung der NERC notwendig.

Mehr als 1 MW überschüssiger Strom

Wenn der an den Abnehmer abzugebende überschüssige Strom mehr als 1 MW beträgt, ist eine Erzeugungslizenz erforderlich und die Vorschriften des Gesetzes sind zu beachten. Inhaber einer Erzeugungslizenz sollten auch prüfen, ob sie eine Vertriebslizenz benötigen. Siehe Anhang 6 für Verfahren zur Beantragung einer Erzeugungslizenz für die anderen Stromerzeugungsoptionen.
4.3 Rechtliche und regulatorische Rahmenbedingungen

Die Regierung hat rechtliche und regulatorische Rahmenbedingungen geschaffen, die darauf abzielen, ein für die Stakeholder des Stromsektors günstiges Umfeld zu schaffen. In der folgenden Tabelle sind einige der relevanten Richtlinien und Rechtsvorschriften dargestellt, die direkt auf die Installation, den Betrieb und die Wartung von PV-Hybridanlagen zur Eigenstromversorgung anwendbar sind.

Tabelle 3: Relevante Richtlinien für die Errichtung von PV-Diesel-Hybridanlagen zur Eigenstromversorgung

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Richtlinie, Datum und ausstellende Behörde</th>
<th>Relevanz</th>
</tr>
</thead>
</table>

4. RECHTLICHER UND REGULATORISCHER RAHMEN FÜR DIE EIGENSTROMVERSORGUNG IN NIGERIA

Tabelle 4: Relevante Rechtsvorschriften für die Entwicklung von PV-Diesel-Hybridanlagen zur Eigenstromversorgung

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rechtsvorschrift</th>
<th>Relevanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electric Power Sector Reforms Act, 2005 (EPSRA; Gesetz zur Reform des Stromsektors von 2005)</td>
<td>Der EPSRA bildet die Rechtsgrundlage für die NERC. Auf dieser Rechtsgrundlage werden die Stromtarife festgelegt. Das Gesetz ist für solche Erzeuger von Eigenstrom relevant, die überschüssigen Strom an Dritte abgeben.</td>
</tr>
</tbody>
</table>

Tabelle 5: Relevante Verordnungen für die Entwicklung von PV-Diesel-Hybridanlagen für die Eigenstromversorgung

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Verordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NERC (Permits for Captive Power Generation) Regulations 2008 (Verordnung der NERC von 2008 über Genehmigungen für die Eigenstromversorgung))</td>
</tr>
<tr>
<td>2</td>
<td>The Regulations on Feed-In Tariff for Renewable Energy Sourced Electricity in Nigeria (REFIT; Verordnung über den Einspeisetarif für Strom aus erneuerbaren Energien)</td>
</tr>
<tr>
<td>3</td>
<td>NERC Eligible Customer Regulation, 2017 (Verordnung der NERC über infrage kommende Kunden von 2017)</td>
</tr>
<tr>
<td></td>
<td>In dieser Verordnung ist festgelegt, wer als Kunde zugelassen wird. Wenn Eigenstromerzeuger über schüssigen Strom an Dritte abgeben wollen, sieht die Verordnung vor, dass zwischen dem Erzeuger (einem Genehmigungsinhaber, der über eine Erzeugungslizenz verfügt) und einem zulässigen Kunden ein Strombezugvertrag besteht. Die Verordnung ist auch deshalb relevant, weil sie die in der operativen Tarifgestaltung anfallenden Gebühren für die Lieferung von Strom an einen zulässigen Kunden festlegt. In der Verordnung ist ferner die Berücksichtigung von TUos-Gebühren (Transmission Use of System; Gebühren für das Nutzung eines Stromübertragungssystems) sowie von DUoS-Gebühren (Distribution Use of System; Gebühren für die Nutzung eines Stromverteilsystems) vorgesehen.</td>
</tr>
</tbody>
</table>

Es ist zu beachten, dass es weitere relevante Verordnungen gibt, die zusätzlich zu den hier aufgeführten Vorschriften zu beachten sind. Der Bau einer PV-Hybridanlage würde sich auf die Umwelt und die Menschen rund um den Standort auswirken. In diesem Zusammenhang können auch die folgenden Vorschriften relevant sein: Nigerian Electricity Management Services Authority (NEMSA) Act (Gesetz über die nigerianische Agentur für Elektrizitätsmanagement NEMSA), Environmental Impact Assessment Act (Gesetz über Umweltverträglichkeitsprüfungen), National Environmental Standards (nationale Umweltstandards), Regulation Enforcement Agency (Establishment) Act (Gesetz zur Errichtung der Rechtsdurchsetzungsbehörde) u. a.

4.4 Regulatorische Richtlinien für Lizenzen und Genehmigungen

In den verschiedenen NERC-Verordnungen über die Eigenstromversorgung ist festgelegt, wie Lizenzen bzw. Genehmigungen Schritt für Schritt zu beantragen sind.

Genehmigungsverfahren für die Eigenstromversorgung

- Ein Antrag muss in der in Anlage I der NERC Captive Generation Regulation angegebenen Form vorliegen und die dort vorgeschriebenen Angaben enthalten. Das Antragsformular kann entweder im Büro der NERC angefordert oder von der Website heruntergeladen werden.
• Ein Antrag auf eine Genehmigung ist an den Sekretär der Kommission (NERC) zu richten und persönlich, per Post oder per Kurier am Hauptsitz der NERC zuzustellen.

• Ein Antrag muss vom Antragsteller oder seinem Bevollmächtigten unterzeichnet und datiert werden.

• Der Antrag ist in drei Exemplaren in Papierform und einer elektronischen Fassung im Microsoft-Office-Format einzureichen.

• Der Antragsteller zahlt nach Einreichung des Antragsformulars eine nicht erstattbare Gebühr, die ggf. von der NERC für die Bearbeitung des Antrags festgelegt wird.

Dauer

Ab dem Datum der Antragstellung dauert es drei Monate, bis der Antragsteller über die Entscheidung der NERC informiert wird.

4.5 Strombezugsverträge, Stromtarife und andere Nebenkosten

Aufgrund der Beschaffenheit der Eigenstromerzeugung gibt es bei diesem Stromversorgungsmodell weder Stromtarife noch Strombezugsverträge, der erzeugte Strom ist nicht zum Verkauf an Dritte bestimmt, sodass es nicht notwendig ist, einen Stromtarif festzulegen oder einen Strombezugsvertrag zu entwerfen. Allerdings erlangt die Frage der Tarifstruktur und des Strombezugsvertrags zentrale Bedeutung, wenn die Ausnahme von der Eigenstromversorgung geltend gemacht wird.

4.5.1 Strombezugsverträge

Möchte der Inhaber einer Genehmigung für die Eigenstromversorgung, auch eine Erzeugungslizenz für den Verkauf von überschüssigem Strom erhalten, so muss er ein PPA abschließen, in dem die Rechte und Pflichten der Parteien niedergelegt sind. Im Rahmen des für die Lieferung von überschüssigem Strom verwendeten PPA, für das eine Erzeugungslizenz erforderlich ist, müssen sich die Parteien gemeinsam auf eine Tarifstruktur einigen. Derzeit werden die Parteien in Nigeria bei der Festlegung des anwendbaren Stromtarifs von den lokalen Gesetzen geleitet. Die Multi-Year Tax Order (MYTO; mehrjährige Tarifanordnung) der NERC dient den Parteien als Orientierung.

4.5.2 Stromtarife

2015 gaben sowohl die Regulierungsbehörden als auch das Energieministerium an, dass die TEM-Phase gestartet werden soll. Damit sollten der Netzcode, der Messcode und die Marktregeln in Kraft treten. Von Erzeuger- und Vertriebsgesellschaften wurde erwartet, dass sie ihre Verpflichtungen gemäß den verschiedenen Vereinbarungen und Branchenrichtlinien einhalten.

Tabelle 6: Gebührenordnung für die Beantragung einer Genehmigung für die Eigenstromversorgung

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Lizenzkategorie (MW)</th>
<th>Gültigkeitszeitraum</th>
<th>Antragsgebühr</th>
<th>Genehmigungsgebühr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Über 1–10</td>
<td>5 Jahre</td>
<td>50.000,00 NGN</td>
<td>200.000,00 NGN</td>
</tr>
<tr>
<td>2</td>
<td>11–20</td>
<td>5 Jahre</td>
<td>50.000,00 NGN</td>
<td>250.000,00 NGN</td>
</tr>
<tr>
<td>3</td>
<td>21–30</td>
<td>5 Jahre</td>
<td>50.000,00 NGN</td>
<td>300.000,00 NGN</td>
</tr>
<tr>
<td>4</td>
<td>31–40</td>
<td>5 Jahre</td>
<td>50.000,00 NGN</td>
<td>450.000,00 NGN</td>
</tr>
<tr>
<td>5</td>
<td>41–50</td>
<td>5 Jahre</td>
<td>50.000,00 NGN</td>
<td>500.000,00 NGN</td>
</tr>
<tr>
<td>6</td>
<td>51–100</td>
<td>5 Jahre</td>
<td>50.000,00 NGN</td>
<td>550.000,00 NGN</td>
</tr>
<tr>
<td>7</td>
<td>Über 100</td>
<td>5 Jahre</td>
<td>50.000,00 NGN</td>
<td>700.000,00 NGN</td>
</tr>
</tbody>
</table>

4.6 Fazit

Dennoch hat sich herausgestellt, dass es sich um ein realisierbares Stromerzeugungsmodell handelt. Die Eigenstromversorgung ist die beste Möglichkeit, wenn das Hauptziel darin besteht, eine zuverlässige und stabile Stromversorgung zu gewährleisten. Ferner konnte gezeigt werden, dass die Eigenstromversorgung den niedrigsten regulatorischen und finanziellen Anforderungen unterliegt und die technischen Verluste reduziert werden.
5. Bewertung der Teilsektoren

Abbildung 3: Attraktivität jedes Teilsektors für PV-Diesel-Hybridanlagen

Quelle: Eigene Darstellung BAS Associates Consulting (2019), Punktesystem, das sich aus der Makroanalyse des Subsektors (Marktvolumen, Exportanteil etc.) sowie der technischen Machbarkeit von Projekten innerhalb des Subsektors (Energieverbrauch, Betriebsprofil etc.) zusammensetzt, Details siehe Anhang 2: Analysematrix
5.1 Makroanalyse der Teilsektoren

Abbildung 4: Makroanalytischer Vergleich

Makroanalyse der Teilsektoren

<table>
<thead>
<tr>
<th>Teilsektor</th>
<th>Marktanteil innerhalb des Subsektors</th>
<th>Exportanteil innerhalb des Subsektors</th>
<th>Vorherrschaft von großen und mittelständischen Unternehmen im Subsektor</th>
<th>Verfügbarkeit von staatlichen Förderinstrumenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schaumstoffe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arzneimittel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosmetika</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farben & ähnliche Erzeugnisse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Softdrinks & Mineralwasser</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reisverarbeitung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Futtermittelherstellung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kühllagerung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quelle: Eigene Darstellung BAS Associates Consulting (2019)
5. BEWERTUNG DER TEILSEKTOREN

5.2 Technische Machbarkeit von Projekten innerhalb der Teilsektoren

Im technischen Vergleich bietet der Teilsektor Farben & verwandte Erzeugnisse die attraktivsten Bedingungen, was vor allem auf den geringen Energieverbrauch pro Flächen-}
einheit zurückzuführen ist. Die in diesem Teilsektor bewerteten Anlagen verfügen über ausreichend Platz, um PV-Anlagen zur Deckung ihres Energiebedarfs zu installieren.

Abbildung 5: Technischer Vergleich

Technischer Vergleich

5.3 Mikroanalyse von Projekten innerhalb der Teilsektoren

Auf Grundlage von durch Fragebögen und Standortbegehungen gewonnenen Daten wurde für jeden Teilsektor eine Finanzanalyse durchgeführt. Die Ergebnisse wurden nicht in die quantitative Analyse einbezogen, da eine Differenzierung zur Unterstützung objektiver Vergleiche der Teilsektoren nicht möglich war. Die Ergebnisse der Umfrage und die anschließende Finanzanalyse zeigen ebenfalls, dass PV-Diesel-Hybridanlagen aus Investorensicht trotz des hohen Investitionssiskos in Nigeria im Vergleich zum derzeitigen Mix aus Diesel- und Netzstrom äußerst wettbewerbsfähig sind. Die Analyse zeigt ferner, dass die Stromgestehungskosten bei einer typischen PV-Hybridanlage mit dieselbetriebenem Reservegenerator 0,11 EUR/kWh betra-
gen (im Vergleich zu 0,30 EUR/kWh bei der Stromerzeugung mit Dieselkraftstoff) (Roche, Ude, und Ofoegbu, 2017). Darüber hinaus zeigt eine durchschnittliche intern Projekterzielung von 27% in allen Teilsektoren sowie eine durchschnittliche Amortisationsdauer von fünf Jahren, dass Akteure, die in diesen Teilsektoren in die Eigenstromversorgung investieren, mit dem richtigen Energiemix attraktive Renditen erzielen können.

Zu beachten ist, dass aufgrund der mit der Beschaffung von Dieselkraftstoff verbundenen wirtschaftlichen Interessen eine allgemeine Zurückhaltung gegenüber erneuerbaren Energien besteht.

5.3.1 Stromgestehungskosten

Alle acht betrachteten Teilsektoren stehen in Hinblick auf die Gewährleistung einer zuverlässigen Stromversorgung durch das staatliche Stromnetz vor denselben Schwierigkeiten und sind daher im täglichen Betrieb in großem Umfang auf Dieselgeneratoren angewiesen. Die Stromgestehungskosten geben Aufschluss darüber, wie eine PV-Diesel-Hybridanlage im Vergleich zum Mix aus Diesel- und Netzstrom abschneidet, der derzeit in allen für diese Studie untersuchten Teilsektoren verwendet wird. Im Durchschnitt liegen die Stromgestehungskosten der dieselbetriebenen Stromerzeugung für die untersuchten Standorte bei ca. 0,30 EUR/kWh. Der Durchschnittspreis für die vorgeschlagenen Hybridanlagen beträgt hingegen 0,11 EUR/kWh. Die durchschnittlichen Stromgestehungskosten wurden auf der Grundlage der oben genannten finanziellen Annahmen anhand der beim Strombegehren erfassten Primärdaten ermittelt und durch laufende Preissimulationen mittels des auf letsmakesolarwork.com verfügbaren PV-Rechners überprüft (Let’s make solar work, 2019). Diese Ergebnisse zeigen auch, dass ein Hybridsystem nicht nur kostengünstiger als der aktuelle Mix aus Diesel- und Netzstrom ist, sondern auch gegenüber einigen der höheren Tarife der Vertriebsgesellschaften wettbewerbsfähig ist. So berechnet die Vertriebsgesellschaft von Abuja derzeit etwa 0,114 EUR/kWh, was den durchschnittlichen Stromgestehungskosten der vorgeschlagenen Hybridanlagen entspricht. Daher ist es möglich, in allen Teilsektoren Netzparität zu erreichen, sobald die Preise für PV-Anlagen weiter sinken und solche Projekte aufgrund ihrer gestiegenen Wettbewerbsfähigkeit leichter zu finanzieren sind.

Tabelle 7: Vergleich der Stromgestehungskosten

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Sektor</th>
<th>Teilsektor</th>
<th>Stromgestehungskosten (EUR/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agrarwirtschaft</td>
<td>Kühlagerung</td>
<td>0,097–0,113</td>
</tr>
<tr>
<td>2</td>
<td>Agrarwirtschaft</td>
<td>Futtermittelherstellung</td>
<td>0,097–0,119</td>
</tr>
<tr>
<td>3</td>
<td>Agrarwirtschaft</td>
<td>Reisverarbeitung</td>
<td>0,091–0,119</td>
</tr>
<tr>
<td>4</td>
<td>Verarbeitendes Gewerbe</td>
<td>Softdrinks & Mineralwasser</td>
<td>0,114–0,123</td>
</tr>
<tr>
<td>5</td>
<td>Verarbeitendes Gewerbe</td>
<td>Farben & verwandte Erzeugnisse</td>
<td>0,097–0,113</td>
</tr>
<tr>
<td>6</td>
<td>Verarbeitendes Gewerbe</td>
<td>Kosmetika</td>
<td>0,113–0,125</td>
</tr>
<tr>
<td>7</td>
<td>Verarbeitendes Gewerbe</td>
<td>Arzneimittel</td>
<td>0,113–0,118</td>
</tr>
<tr>
<td>8</td>
<td>Verarbeitendes Gewerbe</td>
<td>Schaumstoffherstellung</td>
<td>0,097–0,123</td>
</tr>
</tbody>
</table>

Quelle: Eigene Darstellung BAS Associates Consulting (2019)
5.3.2 Nettobarwert, diskontierte Amortisationsdauer und interne Rendite

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Sektor</th>
<th>Teilsektor</th>
<th>Amortisationsdauer (in Jahren)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agrarwirtschaft</td>
<td>Kühllagerung</td>
<td>2,55–5,73</td>
</tr>
<tr>
<td>2</td>
<td>Agrarwirtschaft</td>
<td>Futtermittelherstellung</td>
<td>3,47–5,81</td>
</tr>
<tr>
<td>3</td>
<td>Agrarwirtschaft</td>
<td>Reisverarbeitung</td>
<td>2,45–4,94</td>
</tr>
<tr>
<td>4</td>
<td>Verarbeitendes Gewerbe</td>
<td>Softdrinks & Mineralwasser</td>
<td>4,53–6,37</td>
</tr>
<tr>
<td>5</td>
<td>Verarbeitendes Gewerbe</td>
<td>Farben & verwandte Erzeugnisse</td>
<td>4,43–5,97</td>
</tr>
<tr>
<td>6</td>
<td>Verarbeitendes Gewerbe</td>
<td>Kosmetika</td>
<td>4,81–7,21</td>
</tr>
<tr>
<td>7</td>
<td>Verarbeitendes Gewerbe</td>
<td>Arzneimittel</td>
<td>3,45–5,75</td>
</tr>
<tr>
<td>8</td>
<td>Verarbeitendes Gewerbe</td>
<td>Schaumstoffherstellung</td>
<td>5,53–8,89</td>
</tr>
</tbody>
</table>

Tabelle 8: Vergleich der Amortisationsdauern

Quelle: Eigene Darstellung BAS Associates Consulting (2019)

Abbildung 6: Vergleich der Amortisationsdauern

Quelle: Eigene Darstellung BAS Associates Consulting (2019)
5. BEWERTUNG DER TEILSEKTOREN

Aus den nachfolgenden Abbildungen 7 und 8 geht hervor, dass in allen Teilsektoren eine hohe interne Projekt- und Eigenkapitalrendite von mindestens 20 % zu erzielen ist, die über dem gewichteten durchschnittlichen Kapitalkostenatz von 7,5 % liegt und auf eine günstige Wirtschaftlichkeit des Projektes hinweist.

Abbildung 7: Vergleich der internen Projektzinssätze

Abbildung 8: Vergleich der internen Eigenkapitalzinssätze
5.3.3 Sensitivitätsanalyse

Nigeria gilt nach wie vor als risikoreicher Investitionsmarkt, insbesondere für Neueinsteiger. Dennoch haben ausländische Investoren bewiesen, dass der nigerianische Markt mit der richtigen Produkt- und Marktteintrittsstrategie höchst rentabel sein kann. In diesem Teil der Analyse wird untersucht, wie sich Änderungen des Investitionsvolumens, der Diskontierungssätze und der Betriebs- und Wartungskosten auf die Stromgestehungskosten und damit auf die Rentabilität der Eigenstromversorgung mit PV-Hybridanlagen auswirken können. Abbildung 9 zeigt, dass die Stromgestehungskosten bei einem inflationsbedingten Anstieg des gewichteten durchschnittlichen Kapitalkostensatzes um 7,5 bis 15 % für die meisten Teilsektoren auf über 0,16 EUR/kWh steigen. Dies wird sich zwar sicherlich auf den Gewinn auswirken, macht aber eine PV-Hybridanlage für die Eigenstromversorgung nicht unwirtschaftlich, da der Betrag immer noch unter den derzeitigen Kosten für den Einsatz von Dieselgeneratoren liegt, die den unzuverlässigen Netzstrom ergänzen.

Abbildung 9: Stromgestehungskosten auf Grundlage der Sensitivität gegenüber den gewichteten durchschnittlichen Kapitalkosten

5.4 Zusammenfassung

Die meisten der befragten Unternehmen in den acht ausgewählten Teilsektoren gaben an, dass sie ihre energieintensiven Betriebsabläufe bei Tageslicht durchführen (8.00 bis 17.00 Uhr). Daher kann davon ausgegangen werden, dass sich eine leistungsfähige PV-Anlage zusammen mit einem dieselbetriebenen Reservegenerator für Zeiten geringer Sonneneinstrahlung sowie einem kleinen Batteriespeicher...
zur Versorgung von Sicherheitsbeleuchtungs- und Überwachungseinrichtungen in der Nacht (18.00 bis 07.00 Uhr) am besten eignet. Durch eine solche Auslegung ist sichergestellt, dass der Großteil des von der Anlage erzeugten Stroms vollständig vom Abnehmer genutzt wird. Für die Finanzanalyse wird daher angenommen, dass mindestens 90% des erzeugten Stroms vom Abnehmer bezahlt wird.

Die Ergebnisse der Umfrage zeigen, dass die Bereiche Kühlung und Lagerung und Softdrinks & Mineralwasser die einzigen Teilsektoren waren, die derzeit rund um die Uhr Strom für ihre Produktionsprozesse benötigen. Diese beiden Teilsektoren zeigten auch im Rahmen der Sensitivitätsanalyse bei einer Erhöhung des gewichteten durchschnittlichen Kapitalkostensatzes auf 15% die größte Resilienz.

Selbst wenn netzgekoppelte PV-Anlagen in erheblichem Umfang vom Staat gefördert werden (auf lokaler, regionaler oder nationaler Ebene), ist die für die Stromableitung erforderliche Netzinfrastruktur in Nigeria aufgrund ihres schlechten Zustands kaum geeignet, um die erwarteten Renditen zu gewährleisten. Der laufende Ausbau und die Modernisierung des Stromnetzes werden frühestens in einem Jahrzehnt einen Punkt erreichen, an dem die Infrastruktur netzgekoppelte EE-Kraftwerke wirtschaftlich unterstützen kann.

Drittens muss der Projektentwickler klar festlegen, ob es sich bei der EE-Anlage um eine Anlage zur Eigenstromversorgung oder um ein Minigrid-System handelt. Obwohl beide im Leistungsbereich zwischen 0 kW und 1 MW ähnliche Eigenschaften zeigen, gibt es aus Sicht der Aufsichtsbehörden NERC eine klare Differenzierung, die zuerst geklärt werden muss. Auch bei den Anforderungen an die Lizenzierung und Genehmigung bestehen große Unterschiede zwischen Anlagen zur Eigenstromversorgung und Minigrids.

Abbildung 10: Ergebnisse des Vergleichs der Teilsektoren auf Grundlage des quantitativen Modells

<table>
<thead>
<tr>
<th>Teilsektor</th>
<th>Generelle Eignung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schaumstoffe</td>
<td></td>
</tr>
<tr>
<td>Arzneimittel</td>
<td></td>
</tr>
<tr>
<td>Kosmetika</td>
<td></td>
</tr>
<tr>
<td>Farben & ähnliche Erzeugnisse</td>
<td></td>
</tr>
<tr>
<td>Softdrinks & Mineralwasser</td>
<td></td>
</tr>
<tr>
<td>Reisverarbeitung</td>
<td></td>
</tr>
<tr>
<td>Futtermittelherstellung</td>
<td></td>
</tr>
<tr>
<td>Kühlung</td>
<td></td>
</tr>
</tbody>
</table>

Quelle: Eigene Darstellung BAS Associates Consulting (2019)
6. Geschäftsmodelle für den Einsatz von Eigenstrom in Nigeria
6.1 Sofortkauf – Fallstudie Protergia Energy

Bislang konnten PV-Anlagen mit einer Erzeugungsleistung von 100 kW für die American University Yola (AUN; amerikanische Universität Yola) im Bundesstaat Adamawa installiert werden. Darüber hinaus hat das Unternehmen weitere PV-Anlagen mit einer Leistung von 100 kW für die House on the Rock Church in Abuja errichtet.

Das Geschäftsmodell des Unternehmens beruht auf der Einführung eines intelligenten Managementsystems, das in der Lage ist, zwischen verschiedenen Stromquellen (Solarstrom, Netzstrom oder Generatoren) zu wechseln. Die Systeme sind für eine Fernüberwachung und -steuerung ausgerüstet. Der Grundgedanke ist, menschliche Fehler bei der Systemverwaltung zu minimieren oder sogar völlig auszuschließen.

6.2 Geschäftsmodell für Kühlräume – Fallstudie ColdHubs

Viele der Kunden (Landwirte, Zwischenhändler und Einzelhändler) arbeiten im informellen Sektor und sind aufgrund der Art ihres Geschäftes nicht in der Lage, langfristige Verträge abzuschließen. Um dieser Besonderheit Rechnung zu tragen, verwendet ColdHubs ein flexibles Bezahlungsmo- dell, bei dem die Kunden für den tatsächlich genutzten Platz in den Kühlräumen zahlen. Dabei kann der Kunde seine Produkte für eine beliebige Dauer einlagern, sofern er die Tagesmiete bezahlt.

6.3 Strom als Dienstleistung – Fallstudie StarSight

StarSight ist ein unabhängiges Energieeffizienzunternehmen, das seinen Kunden Strom als Dienstleistung anbietet. In diesem Modell ist der Energiedienstleister dafür verantwortlich, den Kunden in qualitativ hochwertiger Form, zuverlässig und zu erschwinglichen Tarifen mit Strom zu versorgen, wobei ein Mix aus Solarstrom, Strom aus Dieselgeneratoren und Netzstrom genutzt wird. Alle Stromerzeugungsanlagen sind Eigentum des Unternehmens. Im Rahmen des Geschäftsmodells wird ein PPA mit fester Laufzeit vereinbart, das dem Energiedienstleister einen Mindestumsatz garantiert. Dieses PPA sieht in der Regel einen der folgenden Mechanismen vor:

1. monatlicher Festpreis: Der Kunde verpflichtet sich zur monatlichen Zahlung eines Festpreises an den Energiedienstleister, unabhängig von der verbrauchten Strommenge.

2. Stromtarif: Der Kunde bezahlt nur den verbrauchten Strom (pro kWh) nach einem vereinbarten Stromtarif.

Durch dieses Geschäftsmodell kann sich der Kunde auf seinen eigenen Betrieb konzentrieren, während ein Dritter die Stromerzeugung übernimmt. So werden Unwägbarkeiten in Bezug auf das Budget und die Verbrauchsprognose vermieden. Die Kunden profitieren davon, dass ihnen keine Anfangsinvestitionen und laufenden Ausgaben für die Anlagen entstehen, wodurch ihre Bilanz entlastet wird, gleichzeitig können sich die Kunden darauf verlassen, dass der Energiedienstleister die Stromerzeugungsanlagen über die gesamte PPA-Laufzeit in einwandfreiem Zustand hält.
7. Literaturverzeichnis

BMI Research. (kein Datum).

Anhang: Formular zur Datenerfassung

Formular zur Datenerfassung

Name des Unternehmens

Adresse:

Name/E-Mail/Telefonnummer des/der Befragten

Tätig im Teilsektor:
- Futtermittelherstellung
- Reisverarbeitung
- Kühlagerhaltung
- Farben & verwandte Erzeugnisse
- Seifen & Reinigungsmittel
- Arzneimittel
- Softdrinks & Mineralwasser
- Schaumstoffherstellung
- Sonstiges (bitte angeben)

Betriebszeiten (Täglich)
- Rund um die Uhr
- 8.00 – 17.00 Uhr
- Sonstiges (bitte angeben)

Betriebszeiten (wöchentlich)
- 7-Tage-Woche
- 6-Tage-Woche
- Nur wochentags
- Sonstiges (bitte angeben)

Anzahl der Betriebstage pro Jahr

<table>
<thead>
<tr>
<th>Schicht Nr.</th>
<th>Beginn um (Uhrzeit)</th>
<th>Endet um (Uhrzeit)</th>
<th>Relativer Anteil des Tagesbetriebs (d.h. 100% = arbeitsreichste Schicht; 0% = kein Betrieb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Saisonales Betriebs-/Produktionsprofil

<table>
<thead>
<tr>
<th>Monat</th>
<th>Relativer Anteil des Tagesbetriebs (d.h. 100% = arbeitsreichste Schicht; 0% = kein Betrieb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Januar</td>
<td></td>
</tr>
<tr>
<td>Februar</td>
<td></td>
</tr>
<tr>
<td>März</td>
<td></td>
</tr>
<tr>
<td>April</td>
<td></td>
</tr>
<tr>
<td>Mai</td>
<td></td>
</tr>
<tr>
<td>Juni</td>
<td></td>
</tr>
</tbody>
</table>
Anhang 1: Formular zur Datenerfassung (Fortsetzung)

Stromversorgung (Generatoren)

<table>
<thead>
<tr>
<th>August</th>
<th>September</th>
<th>Oktober</th>
<th>November</th>
<th>Dezember</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Generator Nr.</th>
<th>Generator 1</th>
<th>Generator 2</th>
<th>Generator 3</th>
<th>Generator 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installierte Leistung (kVA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leistungsfaktor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraftstoffart</td>
<td>Diesel</td>
<td>Erdgas</td>
<td>Benzin</td>
<td>Sonstiges (bitte angeben):</td>
</tr>
<tr>
<td></td>
<td>Diesel</td>
<td>Erdgas</td>
<td>Benzin</td>
<td>Sonstiges (bitte angeben):</td>
</tr>
<tr>
<td></td>
<td>Diesel</td>
<td>Erdgas</td>
<td>Benzin</td>
<td>Sonstiges (bitte angeben):</td>
</tr>
<tr>
<td></td>
<td>Diesel</td>
<td>Erdgas</td>
<td>Benzin</td>
<td>Sonstiges (bitte angeben):</td>
</tr>
</tbody>
</table>

| Durchschnittl. tagl. Laufzeit (Stunden) | | | | |

<table>
<thead>
<tr>
<th>Generator Nr.</th>
<th>Generator 1</th>
<th>Generator 2</th>
<th>Generator 3</th>
<th>Generator 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installierte Leistung (kVA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leistungsfaktor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraftstoffart</td>
<td>Diesel</td>
<td>Erdgas</td>
<td>Benzin</td>
<td>Sonstiges (bitte angeben):</td>
</tr>
<tr>
<td></td>
<td>Diesel</td>
<td>Erdgas</td>
<td>Benzin</td>
<td>Sonstiges (bitte angeben):</td>
</tr>
<tr>
<td></td>
<td>Diesel</td>
<td>Erdgas</td>
<td>Benzin</td>
<td>Sonstiges (bitte angeben):</td>
</tr>
<tr>
<td></td>
<td>Diesel</td>
<td>Erdgas</td>
<td>Benzin</td>
<td>Sonstiges (bitte angeben):</td>
</tr>
</tbody>
</table>

| Durchschnittl. tagl. Laufzeit (Stunden) | | | | |

Durchschnitt

- 24 Stunden am Tag
- 12 bis 6 Stunden/Tag
- < 6 Stunden/Tag

Kraftstoffkosten

Kraftstoffpreis (NGN/Liter oder NGN/Nm³): ________________

Durchschnitt monatlicher Kraftstoffverbrauch (Liter oder Nm³): ________________

Durchschnitt monatlicher Kraftstoffaufwand (NGN/Monat): ________________

Energieversorgung (Netz)

- An das staatliche Stromnetz angeschlossen
- An ein privates Stromnetz (oder IPP/integrierte Anlage) angeschlossen
- Kein Netzanschluss
Anhang 1: Formular zur Datenerfassung (Fortsetzung)

<table>
<thead>
<tr>
<th>Netzanschlussart</th>
<th>Spannung</th>
<th>Phasenanschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>33kV</td>
<td>dreiphasig</td>
</tr>
<tr>
<td></td>
<td>11kV</td>
<td>einphasig</td>
</tr>
<tr>
<td></td>
<td>415V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>220V</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Netzverfügbarkeit</th>
<th>24 Stunden am Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 bis 18 Stunden/Tag</td>
</tr>
<tr>
<td></td>
<td>18 bis 12 Stunden/Tag</td>
</tr>
<tr>
<td></td>
<td>12 bis 6 Stunden/Tag</td>
</tr>
<tr>
<td></td>
<td>< 6 Stunden/Tag</td>
</tr>
</tbody>
</table>

| Netzanschlusskosten | Netztarif (NGN/kWh): |
| | Durchschnittl. monatliche Netzkosten: |

| Durchschnittl. monatlicher Stromverbrauch in kWh (falls bekannt) | aus Generatoren: .. |
| | aus dem Netz: ... |

<table>
<thead>
<tr>
<th>Tageslastprofil</th>
<th>Lastprofil in kWh</th>
<th>Zeit (falls bekannt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximale Tageslast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Durchschnittl. Tageslast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimale Tageslast</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angaben zu anderen Maschinen und Anlagen mit eigener Stromversorgung (d. h. nicht ans Stromnetz oder an Generatoren angeschlossen)</th>
<th>Name</th>
<th>Zweck</th>
<th>Kapazität</th>
<th>Energiequelle</th>
<th>Laufzeit in Stunden/Tag</th>
<th>Kraftstoffverbrauch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kessel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ofen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gesamter täglicher Stromverbrauch am Standort (kWh/Tag)</th>
<th>Wird von BAS berechnet</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tägliches Stromverbrauchprofil</th>
<th>Anteil des gesamten täglichen Stromverbrauchs, der tagsüber benötigt wird (in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anteil des gesamten täglichen Stromverbrauchs, der nachts benötigt wird (in %)</td>
</tr>
<tr>
<td></td>
<td>Anteil des gesamten täglich verbrauchten Stroms, der mit Generatoren erzeugt wird (in %)</td>
</tr>
<tr>
<td></td>
<td>Anteil des gesamten täglich verbrauchten Stroms, der aus dem Netz stammt (in %)</td>
</tr>
<tr>
<td></td>
<td>Anteil des gesamten täglich verbrauchten Stroms aus anderen Quellen (in %)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Betriebsrhythmus</th>
<th>Ja</th>
<th>Nein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bemerken Sie plötzliche Strombedarfszüge, wenn bestimmte Maschinen/Anlagen/Geräte eingeschaltet werden?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Stellt dieser plötzliche Bedarfszüge eine Belastung für die vorhandenen Generatoren dar (sofern diese in Betrieb sind)?</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Wie oft treten diese Bedarfszüge auf?

- [] Während unserer gesamten betrieblichen Tätigkeit
- [] Sehr häufig
- [] Nur wenn bestimmte Maschinen/Anlagen/Geräte eingeschaltet sind
- [] Selten
Anhang 2: Analysematrix

<table>
<thead>
<tr>
<th>Indikatoren</th>
<th>Kühllagerung</th>
<th>Futtermittelherstellung</th>
<th>Reisverarbeitung</th>
<th>Softdrinks & Mineralwasser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gewichtung (G)</td>
<td>Bewertung (B)</td>
<td>Einschätzung (1–10)</td>
<td>Bewertung (B)</td>
</tr>
<tr>
<td>1. Makroanalyse des Teilsektors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Marktvolumen</td>
<td>wesentlich (10); unwesentlich (1)</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Exportanteil innerhalb des Subsektors</td>
<td>hoch (10) nicht vorhanden (1)</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Technischer Entwicklungstand innerhalb des Subsektors</td>
<td>sehr moderne Technik (10) weitgehend alte Technik (1)</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Verfügbarkeit von staatlichen Förderinstrumenten</td>
<td>Großteils verfügbar (10) nicht vorhanden (1)</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>1.5</td>
<td>Vorherrschaft von großen und mittelständischen Unternehmen im Subsektor</td>
<td>Großteils verfügbar (10) nicht vorhanden (1)</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

Summe Makroanalyse

| | 50 | 180 | 270 | 300 | 300 |

Technische Machbarkeit der Projekte innerhalb des Teilsektors

2.1	Energieverbrauch pro Flächeneinheit (kWh/m²)	niedrig (10); hoch (1)	15	5	75	6	90	6	90	6	90
2.2	Saisonales Strombedarfsprofil	kompatibel mit Solar (10) inkompatibel mit Solar (1)	10	10	100	8	80	8	80	10	100
2.3	Tägliches Betriebsprofil	> 50 % Bedarf tagsüber (10) < 50 % Bedarf i.d. Nacht (1)	10	5	50	8	80	8	80	5	50
2.4	Anteil am täglichen Energiebedarf, der durch Generatoren ins Stromnetz eingespeist wird	100 % aus Gen. (10) 100 % Netzstrom (1)	10	10	100	8	80	8	80	10	100
2.5	Andere verfügbare erneuerbare Energiequellen	verfügbar (10) nicht vorhanden (1)	5	10	50	10	50	10	50	7	35

Summe technische Bewertung

| | 50 | 375 | 380 | 380 | 375 |

Gesamtbewertung

| | 100 | 555 | 650 | 680 | 675 |

Quelle: Eigene Darstellung BAS Associates Consulting (2019)
Anhang 2: Analysematrix (Fortsetzung)

<table>
<thead>
<tr>
<th>Indikatoren</th>
<th>kurze Erklärung</th>
<th>Gewichtung (G)</th>
<th>Bewertung (B)</th>
<th>Einschätzung (R * W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Makroanalyse des Teilsektors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1 Marktsegment</td>
<td>wesentlich (10); unwesentlich (1)</td>
<td>10</td>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>1,2 Exportanteil innerhalb des Subsektors</td>
<td>hoch (10); nicht vorhanden (1)</td>
<td>10</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1,3 Technischer Entwicklungsstand innerhalb des Subsektors</td>
<td>sehr moderne Technik (10); weitgehend alte Technik (1)</td>
<td>10</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td>1,4 Verfügbarkeit von staatlichen Förderinstrumenten</td>
<td>Großteils verfügbar (10); nicht vorhanden (1)</td>
<td>10</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1,5 Vorherrschaft von großen und mittelständischen Unternehmen im Subsektor</td>
<td>Großteils verfügbar (10); nicht vorhanden (1)</td>
<td>10</td>
<td>7</td>
<td>70</td>
</tr>
</tbody>
</table>

Summe Makroanalyse

<table>
<thead>
<tr>
<th>Farben & ähnliche Erzeugnisse</th>
<th>Kosmetika</th>
<th>Arzneimittel</th>
<th>Schaumstoffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>230</td>
<td>220</td>
<td>270</td>
</tr>
</tbody>
</table>

2. Technische Machbarkeit der Projekte innerhalb des Teilsektors

<table>
<thead>
<tr>
<th>Indikatoren</th>
<th>Bewertung</th>
<th>Gewichtung (G)</th>
<th>Bewertung (B)</th>
<th>Einschätzung (R * W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,1 Energieverbrauch pro Flächeneinheit (kWh/m²)</td>
<td>niedrig (10); hoch (1)</td>
<td>15</td>
<td>9</td>
<td>135</td>
</tr>
<tr>
<td>2,2 Saisonales Strombedarfsprofil</td>
<td>kompatibel mit Solar (10); inkompatibel mit Solar (1)</td>
<td>10</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>2,3 Tagliches Betriebsprofil</td>
<td>> 50 % Bedarf tagsüber (10); < 50 % Bedarf i.d.Nacht (1)</td>
<td>10</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td>2,4 Anteil am täglichen Energiebedarf, der durch Generatoren ins Stromnetz eingespeist wird</td>
<td>100 % aus Gen. (10); 100 % Netzstrom (1)</td>
<td>10</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td>2,5 Andere verfügbare erneuerbare Energiequellen</td>
<td>verfügbar (10); nicht vorhanden (1)</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Summe technische Bewertung

<table>
<thead>
<tr>
<th>Farben & ähnliche Erzeugnisse</th>
<th>Kosmetika</th>
<th>Arzneimittel</th>
<th>Schaumstoffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>400</td>
<td>345</td>
<td>295</td>
</tr>
</tbody>
</table>

Gesamtbewertung

<table>
<thead>
<tr>
<th>Farben & ähnliche Erzeugnisse</th>
<th>Kosmetika</th>
<th>Arzneimittel</th>
<th>Schaumstoffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>630</td>
<td>565</td>
<td>565</td>
</tr>
</tbody>
</table>

Quelle: Eigene Darstellung BAS Associates Consulting (2019)
Anhang 3: Modell/Zusammenfassung der Finanzanalyse

<table>
<thead>
<tr>
<th>Sektor</th>
<th>Teilsektor</th>
<th>Stromgestehungskosten (EUR/kWh)</th>
<th>Amortisationsdauer (in Jahren)</th>
<th>Interne Eigenkapitalrendite (in %)</th>
<th>Interne Projektrendite (in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrarwirtschaft</td>
<td>Kühllagerhaltung</td>
<td>0,097 - 0,113</td>
<td>2,55 - 5,73</td>
<td>33,60 - 50,20</td>
<td>25,40 - 34,10</td>
</tr>
<tr>
<td>Agrarwirtschaft</td>
<td>Futtermittelherstellung</td>
<td>0,097 - 0,119</td>
<td>3,47 - 5,81</td>
<td>33,20 - 43,50</td>
<td>25,20 - 30,70</td>
</tr>
<tr>
<td>Agrarwirtschaft</td>
<td>Reisverarbeitung</td>
<td>0,091 - 0,119</td>
<td>2,45 - 4,94</td>
<td>37,70 - 51,20</td>
<td>27,70 - 34,60</td>
</tr>
<tr>
<td>Verarbeitendes Gewerbe</td>
<td>Softdrinks & Mineralwasser</td>
<td>0,114 - 0,123</td>
<td>4,53 - 6,37</td>
<td>30,80 - 39,00</td>
<td>23,80 - 28,40</td>
</tr>
<tr>
<td>Verarbeitendes Gewerbe</td>
<td>Farben & verwandte Erzeugnisse</td>
<td>0,097 - 0,113</td>
<td>4,43 - 5,97</td>
<td>32,40 - 39,30</td>
<td>24,80 - 28,50</td>
</tr>
<tr>
<td>Verarbeitendes Gewerbe</td>
<td>Kosmetika</td>
<td>0,113 - 0,125</td>
<td>4,81 - 7,21</td>
<td>28,00 - 38,10</td>
<td>22,20 - 27,90</td>
</tr>
<tr>
<td>Verarbeitendes Gewerbe</td>
<td>Arzneimittel</td>
<td>0,113 - 0,118</td>
<td>5,53 - 8,89</td>
<td>24,10 - 34,50</td>
<td>19,80 - 25,90</td>
</tr>
<tr>
<td>Verarbeitendes Gewerbe</td>
<td>Schaumstoffherstellung</td>
<td>0,097 - 0,123</td>
<td>3,45 - 5,75</td>
<td>33,50 - 43,60</td>
<td>25,40 - 30,80</td>
</tr>
</tbody>
</table>

Quelle: Eigene Darstellung BAS Associates Consulting (2019)

Anhang 4: Modell/Zusammenfassung der Finanzanalyse

I. Antragsverfahren

- Der Antrag muss in der in Anlage I der NERC Captive Generation Regulation (Verordnung der NERC über die Eigenerzeugung) angegebenen Form vorliegen und die dort vorgeschriebenen Angaben enthalten. Das Antragsformular ist beim Büro der NERC erhältlich und kann alternativ von der Website der NERC heruntergeladen werden.

- Der Genehmigungsantrag ist an den Secretary zu richten und persönlich, per Post oder per Kurier am Hauptsitz der NERC zuzustellen.

- Der Antrag muss vom Antragsteller oder seinem Bevollmächtigten unterzeichnet und datiert werden.

- Der Antrag ist in drei Exemplaren in Papierform und einer elektronischen Fassung im Microsoft-Office-Format einzurichten.

- Der Antragsteller zahlt nach Einreichung des Antragsformulars eine nicht erstattbare Gebühr, die ggf. von der NERC für die Bearbeitung des Antrags festgelegt wird.

II. Verlängerung der Genehmigung

- Ein Antrag auf Verlängerung einer von der NERC erteilten Genehmigung ist mindestens drei (3) Monate vor deren Ablauf in der in Anlage III angegebenen Form zu stellen.

- Sofern die NERC nichts anderes schriftlich vorschreibt, ist jedem Verlängerungsantrag ein Zahlungsbeleg für die Gebühren beizufügen, die die NERC ggf. für die Bearbeitung des Antrags erhebt.

- Bei der Bearbeitung eines Verlängerungsantrags für Genehmigungen wird das in Kapitel II vorgeschriebene Verfahren befolgt, soweit es anwendbar ist.
Anhang 5: Einholung einer Erzeugungslizenz für andere Stromarten

Überschüssiger Strom

Erzeugung von überschüssigem Strom:
(a) Ein Genehmigungsinhaber muss die schriftliche Zustimmung der NERC einholen, bevor er bis zu 1 MW an überschüssigem Strom an einen Abnehmer liefern darf.

(b) Ein Genehmigungsinhaber, der beabsichtigt, mehr als 1 MW an überschüssigem Strom an einen Abnehmer zu liefern, muss gemäß den Bestimmungen von § 62 Abs. 2 des Gesetzes eine Stromerzeugungslizenz beantragen.

Um in Nigeria für Vertriebszwecke Strom erzeugen, übertragen und verteilen zu können, muss eine Lizenz beantragt werden. Ein Unternehmen, das plant, Strom zu erzeugen, muss die dafür erforderliche Genehmigung und Lizenz von der NERC einholen.

Zu den von der NERC ausgestellten Lizenzen gehört die Erzeugungslizenz, die dem Lizenzinhaber die Befugnis erteilt, eine Anlage zum Zwecke der Erzeugung und Lieferung von Strom zu bauen, zu betreiben, zu warten und deren Eignertümer zu sein.

Die NERC erteilt drei Arten von Stromerzeugungslizenzen.

Stromerzeugungslizenz

Ein neues Unternehmen, das die Erzeugung von mehr als 1 MW Strom anstrebt, muss bei der NERC einen schriftlichen Antrag auf eine Stromerzeugungslizenz stellen. Dazu füllt es ein Antragsformular aus und reicht es zusammen mit den Unternehmensunterlagen und einer nicht erstattungsfähigen Antragsgebühr ein.

Für diesen Schritt im Vorfeld der Antragstellung gelten die folgenden Anforderungen:

1. Das Unternehmen muss in Nigeria eingetragen sein und über eine Gründungsurkunde der Corporate Affairs Commission sowie Satzungsdokumente verfügen.

2. Es muss im Besitz einer Steuerbescheinigung sein, durch die nachgewiesen wird, dass das Unternehmen die Steuern für die drei Jahre, die der Antragstellung unmittelbar vorausgehen, gezahlt hat.

3. Das Unternehmen muss seine geprüften Jahresabschlüsse für die drei Jahre vorlegen, die der Antragsstellung unmittelbar vorausgehen.
4. Das Unternehmen muss in Bezug auf das geplante Betriebsgebiet, oder wenn die geplante Stromerzeugungskapazität weniger als 10 MW beträgt, eine Umweltverträglichkeitsprüfung (UVP) durchgeführt und das entsprechende Zertifikat erhalten haben.

5. Außerdem muss das Unternehmen eine angemessene Versicherungspolice für die Generatoren, die Anlagen und die sonstigen Einrichtungen unterhalten.

6. Das Unternehmen muss die Arbeitserlaubnis und die Genehmigung der Expatriate Quota bei der nigerianischen Einwanderungsbehörde einholen, wenn Auslandsmitarbeiter (Expatriates) beschäftigt werden sollen.

7. Ferner ist ein Bewertungsbericht darüber zu erstellen, wie die Stromabführung gehandhabt werden soll.

8. Wenn das Unternehmen ein IPP ist, wird erwartet, dass es über eine Abnahmereinbarung mit einem Stromabnehmer verfügt.

9. Wenn das Unternehmen ein IPP ist und beabsichtigt, Strom in das allgemeine Stromnetz einzuspeisen, ist dafür ein PPA mit der NBET abzuschließen.

Die NERC verlangt von einem IPP folgende Angaben

1. Wenn das Betriebsgelände direkt von der Regierung zur Verfügung gestellt wird: Dokumente, die das Eigentum an dem Projektstandort belegen oder ein langfristiger Pachtvertrag für das Projektgelände (z. B. eine Nutzungsbewilligung); wenn es sich um ein Gelände in Privateigentum handelt: eine Übertragungsurkunde, ein Kaufvertrag oder eine Schenkungsurkunde usw.

2. Der IPP ist zum Abschluss der erforderlichen Kraftstoffliefer- und Transportvereinbarungen verpflichtet, nachdem er angegeben hat, welche Art der Stromerzeugung vorgesehen ist.

3. Außerdem wird davon ausgegangen, dass der IPP ggf. die Zustimmung des Ministeriums für Wasserressourcen eingeholt hat.

4. Er ist auch verpflichtet, die Bestätigung der TCN darüber einzuholen, dass der künftig erzeugte Strom an einem Netzeinspeisepunkt abgeleitet wird.

Wenn diese Voraussetzungen vollständig erfüllt sind, legt die NBET dem Unternehmen ein PPA vor, damit es die Bedingungen vor den Verhandlungen prüfen kann. Sobald sich die Parteien auf die Bedingungen und den Stromtarif geeinigt und die Vereinbarung ausgearbeitet haben, kann das PPA abgeschlossen werden.
Verfahren zur Einholung einer Stromerzeugungslizenz

1. Sobald der Stromerzeuger die bis zu diesem Punkt notwendigen Schritte des Antragsverfahrens erledigt hat, besteht der nächste Schritt darin, sich zur Einholung der Betriebslizenz an die NERC zu wenden; zu diesem Zweck muss sich der Stromerzeuger das entsprechende Antragsformular beschaffen und ausfüllen.

2. Die NERC benötigt zur Prüfung des Antrags weitere Dokumente, wenn bestimmte Informationen nicht vorliegen. In diesem Fall kann die NERC nach der Prüfung der vorgelegten Dokumente weitere Unterlagen nachfordern, die sie bei ihrer Entscheidung zu unterstützen. Zu diesen Dokumenten gehören etwa Lebensläufe der leitenden und technischen Mitarbeiter der Stromerzeugungsanlage oder ein Geschäftsplan für die ersten zehn (10) Betriebsjahre ab Inbetriebnahme.

5. Bei der Prüfung des Genehmigungsantrags prüft die NERC die Eignung des Antragstellers, die vorgelegten Unterlagen sowie alle Einwände der interessierten Öffentlichkeit.

7. Die Entscheidung darüber, ob die NERC dem Antrag stattgibt oder diesen ablehnt, wird dem Antragsteller schriftlich mitgeteilt. Wird der Antrag abgelehnt, teilt die NERC schriftlich die Ablehnungsgründe mit.

8. Nach Ablehnung hat der Antragsteller 21 Tage lang Zeit, sich zur Ablehnung seines Antrags gegenüber der NERC zu äußern und ggf. weitere Unterlagen vorzulegen, die dazu führen können, dass die NERC den Antrag erneut prüft.

9. Wenn die NERC endgültig entscheidet, den Antrag abzulehnen, kann der Antragsteller bei der NERC eine Antragsüberprüfung verlangen.

10. Genehmigt die NERC den Antrag, ist der Antragsteller dazu verpflichtet, die erforderliche Lizenzgebühr in Abhängigkeit von der Menge der zu erzeugenden Megawatt zu zahlen, woraufhin ihm eine Lizenz für einen Zeitraum von zehn Jahren erteilt wird, die konkrete, verbindliche Auflagen enthält.
Anhang 6: Einholung einer Vertriebslizenz

1. Allgemeines

(2) Diese Verordnung tritt an dem Tag in Kraft, an dem sie durch einen Beschluss der NERC erlassen wird.

2. Begriffsbestimmungen

(1) Sofern der Kontext keine andere Auslegung erfordert, haben in dieser Verordnung die folgenden Begriffe die nachfolgend angegebene Bedeutung:

„Gesetz“: der Electric Power Sector Reform Act, 2005 in seiner jeweils geltenden Fassung.

„Eigenstromversorgung“: die Erzeugung von mehr als 1 MW Strom zum Zwecke des Verbrauchs durch den Stromerzeuger, wobei der Strom vom Stromerzeuger selbst verbraucht und nicht an Dritte verkauft wird.

„Eigenbedarfskraftwerk“: ein Kraftwerk mit einer Leistung von über 1 MW, das vom Stromerzeuger zur Deckung des Eigenbedarfs errichtet wird.

3. Genehmigungsverfahren für die Eigenstromversorgung

1. Antragsformular

(l) Gemäß §§ 32 Abs. 1 Buchstabe a, 32 Abs. 1 Buchstabe e und 32 Abs. 2 Buchstabe d des Gesetzes, das die NERC dazu ermächtigt, für eine effiziente Branchen- und Marktstruktur zu sorgen und die optimale Nutzung der Ressourcen für die Erbringung von Stromversorgungsdienstleistungen sowie die Sicherheit, Zuverlässigkeit und Qualität der Dienstleistungen bei der Erzeugung und Lieferung von Strom an die Verbraucher sicherzustellen; und Personen, die mit der Erzeugung, Übertragung, dem Netzbetrieb, der Verteilung und dem Handel von Strom befasst sind, zu regulieren, muss jede Person, die ein Eigenbedarfskraftwerk errichten, besitzen, warten, installieren und/oder betreiben möchte, zunächst zu den Bedingungen, die die NERC in der Genehmigung und in Übereinstimmung mit dieser Verordnung festlegen kann, bei der NERC eine Genehmigung einholen.

(a) Der Genehmigungsantrag muss in der in Anlage I zu dieser Verordnung angegebenen Form vorliegen und die dort vorgeschriebenen Angaben enthalten. Das Antragsformular ist beim Büro der NERC erhältlich und kann alternativ von der Website der NERC heruntergeladen werden.

(b) Der Genehmigungsantrag ist an den Secretary zu richten und persönlich, per Post oder per Kurier am Hauptsitz der NERC zuzustellen.

(c) Der Antrag muss vom Antragsteller oder seinem Bevollmächtigten unterzeichnet und datiert werden.

(e) Der Antrag ist in drei Exemplaren in Papierform und einer elektronischen Fassung im Microsoft-Office-Format einzureichen.

(f) Alle Genehmigungsanträge müssen sämtliche im Antragsformular angegebenen Angaben enthalten.
(g) Nach Eingang des Antrags bestätigt die NERC das Eingangsdatum und übermittelt dem Antragsteller eine Bestätigungs-
mitteilung, auf der das Eingangsdatum vermerkt ist.

4. Prüfung des Antrags

(a) Die NERC prüft den Antrag und fordert den Antragsteller ggf. dazu auf, innerhalb einer vorgegebenen Frist alle eventuell erforderlichen zusätzlichen Informationen vorzulegen, vorausgesetzt, dass der Zeitraum zwischen dem Eingang des Antrags und der Begleitdokumente und dem Datum, an dem die NERC den Antragsteller über die Unzulänglichkeit der Dokumente und Informationen informiert, einen Monat nicht überschreitet.

(b) Stellt die NERC fest, dass der Antrag vollständig ist, bestätigt sie, dass der Antrag ordnungsgemäß gestellt wurde und bereits zur Prüfung zum Zwecke der Erteilung einer Genehmigung ist. Die NERC bestätigt gegenüber dem Antragsteller innerhalb von dreißig (30) Tagen nach Eingang des vollständigen Antrags schriftlich, dass der Antrag ordnungsgemäß gestellt wurde.

5. Stattgabe oder Ablehnung des Genehmigungsantrags

(a) Nach eingehender Prüfung des Antrags gibt die NERC dem Genehmigungsantrags statt oder lehnt ihn ab.

(b) Die Frist zwischen der Bestätigung des Eingangs des Antrags gemäß Ziff. 6 Buchstabe b und dem Zeitpunkt, an dem die NERC den Antragsteller über ihre Entscheidung bzw. die von ihr beabsichtigte Entscheidung über die Erteilung oder Verweigerung der Genehmigung informiert, darf drei (3) Monate nicht überschreiten.

(c) Hat die NERC eine Genehmigung erteilt, unterrichtet sie den Antragsteller darüber sowie über die zu erfüllenden Bedingungen, einschließlich der vor der Ausstellung der Genehmigung zu zahlenden Gebühren.

(d) Beabsichtigt die NERC, die Erteilung der Genehmigung zu verweigern, teilt sie dem Antragsteller ihre Absicht schriftlich unter Angabe der Ablehnungsgründe mit.

(e) Der Antragsteller muss Gelegenheit haben, innerhalb von einundzwanzig (21) Tagen nach Erhalt der Ablehnungs-
mitteilung zweckdienliche Erklärungen gegenüber der NERC abzugeben.

(f) Die NERC prüft die vom Antragsteller abgegebene Erklärung; sofern die Erklärung erfolglos geblieben ist oder keine Erklärung abgegeben wurde, teilt sie dem Antragsteller schriftlich mit, dass der Genehmigungsantrag abgelehnt wurde.

(g) Die NERC hat die Ablehnungsgründe gegenüber dem Antragsteller klar und in Schriftform darzulegen.

6. Übermittlung detaillierter Informationen an die NERC

(a) Alle Betreiber von Eigenbedarfskraftwerken müssen der NERC jährlich detaillierte Informationen über den Betrieb der Anlage übermitteln. Die Dokumente müssen Informationen über Arbeitsschutzstandards und -verfahren in der Anlage, sich aus dem Betrieb der Anlage ergebende Umweltprobleme sowie weitere Informationen enthalten, die die NERC ggf. anfordern kann.

(b) Die NERC ist befugt, die Betriebsräume des Eigenbedarfskraftwerks jederzeit zu betreten und zu inspizieren, um sich zu vergewissern, dass die geltenden Vorschriften und Genehmigungsbedingungen eingehalten werden.
(c) Vor jeder geplanten wesentlichen Änderung am Eigenbedarfskraftwerk muss die Zustimmung der NERC eingeholt werden. Die diesbezügliche Entscheidung der NERC (Zustimmung oder Ablehnung) sollte innerhalb von fünf Werktagen nach Eingang des Antrags getroffen werden. Alle anderen Änderungen oder Erweiterungen der Kapazität der Eigenbedarfskraftwerke sind der NERC innerhalb von vierundzwanzig (24) Stunden nach der Änderung oder Erweiterung mitzuteilen.

(d) Bei Verstößen gegen Genehmigungsbedingungen kann die NERC eine Strafe gegen den Genehmigungsinhaber verhängen oder die Genehmigung gemäß Kapitel VII dieser Verordnung widerrufen.

7. Durchsetzung

(a) Die NERC stellt fest, ob eine Person eine Geschäftstätigkeit betreibt bzw. kurz davorsteht, eine Geschäftstätigkeit aufzunehmen, die nach Ziff. 3 Buchstabe a dieser Verordnung genehmigungspflichtig ist.

(b) Sämtliche Anordnungen und schriftlichen Mitteilungen der NERC sind vom Genehmigungsinhaber ordnungsgemäß umzusetzen bzw. zu befolgen, unabhängig davon, ob der Genehmigungsinhaber gegen eine solche Anordnung oder Mitteilung rechtliche Schritte eingeleitet hat bzw. dies beabsichtigt; dies gilt nicht, wenn die betreffende Anordnung von einem zuständigen Gericht aufgehoben wurde.

(c) Die NERC kann jede Person, die gegen Ziff. 3 Buchstabe a dieser Verordnung verstößt, anweisen, ihre Tätigkeit einzustellen, und kann alle weiteren Anordnungen erlassen, die erforderlich sind, um das Fortbestehen oder Wiederauftreten des Verstoßes zu verhindern.

8. Strafen

Gemäß § 94 Abs. 1 des Gesetzes gilt:

(a) Jede Person, die gegen eine Bestimmung dieser Verordnung verstößt, begeht eine Straftat und wird, wenn keine spezifische Sanktion vorgesehen ist, mit den folgenden Strafen belegt:

(i) bei einem erstmaligen Verstoß mit einer Geldstrafe von bis zu 100.000,00 NGN (hunderttausend Naira) oder einer Freiheitsstrafe von bis zu einem (1) Jahr oder einer Geldstrafe und einer Freiheitsstrafe; oder (ii) bei wiederholten Verstößen mit einer Geldstrafe von bis zu 500.000,00 NGN (fünfhunderttausend Naira) oder einer Freiheitsstrafe von bis zu drei (3) Jahren oder einer Geldstrafe und einer Freiheitsstrafe.

(b) Begeht eine Person eine Straftat, wird dies mit einer Geldstrafe von bis zu 100.000,00 NGN (hunderttausend Naira) oder einer Freiheitsstrafe von bis zu einem (1) Jahr oder einer solchen Geldstrafe und Freiheitsstrafe geahndet, wenn die Person:

(i) es unterlässt oder sich weigert, Unterlagen oder Angaben in der vorgeschriebenen Weise und in der vorgeschriebenen Zeit einzureichen bzw. zu machen, oder wenn sie falsche oder unvollständige Unterlagen einreicht bzw. falsche oder unvollständige Angaben macht; oder (ii) absichtlich einen Inspektor oder Polizeibeamten in der Ausübung seiner Befugnisse oder Pflichten nach diesem Gesetz behindert; oder (iii) es ohne triftigen Grund unterlässt oder sich weigert, gegenüber einem Inspektor oder einem Polizeibeamten nach § 95 des Gesetzes erforderliche Angaben zu machen, oder wenn sie falsche oder unvollständige Angaben macht.
9. Änderung der Genehmigung

(a) Die Bedingungen einer Genehmigung können geändert werden, wenn:

(i) der Genehmigungsinhaber dies beantragt;

(ii) bei der NERC eine Beschwerde eines Verbrauchers, eines zugelassenen Kunden, eines Verbraucherverbands, einer Vereinigung zugelassener Kunden, eines Lizenznehmers oder eines anderen Genehmigungsinhabers eingeht;

(iii) die NERC dies auf eigene Initiative beschließt.

(b) Sofern die NERC nichts anderes schriftlich vorschreibt, ist jedem Änderungsantrag des Genehmigungsinhabers ein Zahlungsbeleg für die Gebühren beizufügen, die ggf. für die Bearbeitung des Antrags erhoben werden.

c) Ein Antrag auf Änderung einer von der NERC erteilten Genehmigung muss in der in Anlage II angegebenen Form gestellt werden.

10. Verlängerung der Genehmigung

(a) Ein Antrag auf Verlängerung einer von der NERC erteilten Genehmigung ist mindestens drei (3) Monate vor deren Ablauf in der in Anlage III angegebenen Form zu stellen.

(b) Sofern die NERC nichts anderes schriftlich vorschreibt, ist jedem Verlängerungsantrag ein Zahlungsbeleg für die Gebühren beizufügen, die die NERC ggf. für die Bearbeitung des Antrags erhebt.

c) Die Bearbeitung eines Verlängerungsantrags für Genehmigungen erfolgt gemäß dem in Kapitel II vorgeschriebenen Verfahren, soweit dieses anwendbar ist.

11. Verfahren zum Widerruf der Genehmigung

(a) Die NERC kann von sich aus oder nach Eingang einer Beschwerde oder eines Hinweises eines Verbrauchers, zugelassenen Kunden, eines Verbraucherverbands, einer Vereinigung zugelassener Kunden oder anderer Genehmigungsinhaber das Verhalten oder die Arbeitsweise eines Genehmigungsinhabers untersuchen.

(b) Die NERC kann eine Genehmigung widerrufen, wenn sie davon überzeugt ist, dass Folgendes zutrifft:

(i) Die Genehmigung wurde durch Betrug oder die Falschdarstellungen bzw. das Verschweigen wesentlicher Tatsachen erlangt; oder

(ii) der Genehmigungsinhaber hat vorsätzlich oder ohne triftigen Grund gegen die für ihn geltenden Bestimmungen dieser Verordnung verstoßen; oder

(iii) der Genehmigungsinhaber hat es versäumt, eine Bedingung der Genehmigung zu erfüllen, deren Verletzung ausdrücklich einen Widerrufsgrund darstellt;

(iv) der Genehmigungsinhaber wird zahlungsunfähig oder seine Insolvenz wurde festgestellt.
(c) Hat sich die NERC davon überzeugt, dass ausreichende Gründe für den Widerruf der Genehmigung vorliegen, setzt sie den Genehmigungsinhaber und alle weiteren Personen, Personengruppen oder Stellen, die nach Auffassung der NERC zu informieren sind, über das Verfahren zum Widerruf der Genehmigung in Kenntnis.

(d) Das Verfahren der NERC zum Widerruf der Genehmigung wird ggf. in der von der NERC vorgeschriebenen Weise geführt, vorausgesetzt, dass:

(i) die NERC dem Genehmigungsinhaber ihre Widerrufsabsicht und die Gründe dafür schriftlich mitteilt;

(ii) die NERC dem Genehmigungsinhaber Gelegenheit gibt, innerhalb von sechzig (60) Tagen nach Eingang der Mitteilung über die Widerrufsabsicht nachzuweisen, dass sich die Umstände so geändert haben, dass der Widerruf nicht mehr gerechtfertigt ist.

12. Entscheidung über den Widerruf der Genehmigung

(a) Beschließt die NERC, die Genehmigung nach Umsetzung des festgelegten Verfahrens zu widerrufen, so teilt sie dem Genehmigungsinhaber mit, ab welchem Zeitpunkt er den weiteren Betrieb der Anlage einzustellen hat.

(b) Die NERC kann anstelle des Widerrufs der Genehmigung eine andere Anordnung mit weiteren Auflagen erlassen, bei deren Einhaltung der Genehmigungsinhaber seine Anlage auch künftig betreiben darf.

13. Anhörung und Berufung

(a) Jede Person, die durch eine Entscheidung der NERC, keine Genehmigung zu erteilen, eine Weigerung der NERC, eine Genehmigung zu verlängern, eine Änderung einer Genehmigung oder eine Weigerung der NERC, eine Genehmigung zu ändern, oder den Widerruf einer Genehmigung benachteiligt wird, kann bei der NERC innerhalb von dreißig (30) Tagen nach der Entscheidung, der Anordnung oder dem Widerruf einen Antrag auf Überprüfung der Entscheidung, der Anordnung oder des Widerrufs stellen.

(b) Die NERC bestätigt, prüft, ändert oder widerruft nach Maßgabe ihrer Verfahrensordnung ihre Entscheidung, bevor sie eine endgültige Anordnung erlässt.

(c) Diese Überprüfung oder Neubewertung muss innerhalb von sechzig (60) Tagen nach dem Zeitpunkt, zu dem sie beantragt wurde, abgeschlossen sein.

14. Rücknahme von Anträgen

(a) Ein Genehmigungsantrag kann von einem Antragsteller jederzeit schriftlich zurückgezogen werden.

(b) Zurückgezogene Anträge können nicht reaktiviert werden; allerdings kann der Antrag als neuer Antrag eingereicht werden, sofern die entsprechende Antragsgebühr entrichtet wird.

15. Änderung oder Aufhebung der Verordnung

Die NERC kann die Bestimmungen dieser Verordnung ändern oder aufheben.
Anhang 7: Im Rahmen der Studie analysierte Betriebe

Die für jeden Teilsektor durchgeführte Analyse ergab die nachfolgend dargestellten Ergebnisse:

Futtermittelherstellung

Die folgenden Unternehmen wurden kontaktiert:

1. Futtermittelwerk Olam

Um die erforderliche Produktionskapazität für Futtermittel zu gewährleisten, ist die Fabrik an 365 Tagen im Jahr rund um die Uhr in Betrieb (vier Schichten). Die erste Schicht geht von 9.00 bis 14.00 Uhr, mit einer Produktionsauslastung von 60 %. Die anderen Schichten gehen von 14.00 Uhr bis 21.00 Uhr, 21.00 Uhr bis 24.00 Uhr und 24.00 Uhr bis 9.00 Uhr und arbeiten jeweils mit einer Produktionsauslastung von 30 %, 5 % und 5 %. Die Monate mit der geringsten Auslastung sind April, August und Dezember. In diesen Zeiträumen wird die Anlage mit einer Auslastung von 50 % betrieben. Für den Rest des Jahres ist die Produktionsstätte zu 100 % ausgelastet.

Der Betrieb ist nicht an das allgemeine Stromnetz angeschlossen.

2. Premium Farms

Die Anlage ist seit zehn Jahren in Betrieb und vertreibt ihre Futtermittel in den benachbarten nördlichen Bundesstaaten des Landes. Das Unternehmen gilt als das größte und am besten organisierte einheimische Geflügelzuchtunternehmen Nordnigerias.

Wegen des kontinuierlichen Futtermittelbedarfs der in dem Betrieb gehaltenen Vögel ist die Anlage an 364 Tagen im Jahr rund um die Uhr in Betrieb. Das Unternehmen hat etwa 130 Mitarbeiter, die in zwei Schichten arbeiten (Schicht 1: 7.00 bis 19.00 Uhr, Schicht 2: 19.00 bis 7.00 Uhr), um einen kontinuierlichen Betrieb der Futtermühle und der Eierproduktion zu gewährleisten.

Reisverarbeitung

1. Reismühle Onyx

Die Reisverarbeitungsanlage produziert in einer Woche zwischen 144 und 216 Tonnen Rohreis. Dabei fallen stets etwa 31,6 Tonnen Biomasseabfälle in Form von Reisspelzen an. Das Werk ist an 22 Stunden pro Tag und sechs Tagen pro Woche (Montag bis Samstag) in Betrieb. Auf die Produktion entfallen durchschnittlich 283 Tage; die restlichen Tage werden für die Wartung und Reparatur der Stromversorgungsanlagen genutzt. Der minimale Strombedarf aller Anlagen in der Fabrik beträgt 200 kW, der maximale 300 kW.

Die Reismühle ist an das staatliche Stromnetz angeschlossen (dreiphasig, 33 kV). Der von der Stromverteilungsgesellschaft berechnete Stromtarif beträgt für Anlagen, die an 415-V-Stromleitungen angeschlossen sind, 0,081 EUR/kWh. Netzstrom ist nur schlecht verfügbar; die monatlichen Stromkosten des Standorts belaufen sich auf 551,18 EUR.

2. Reismühle Klysat

Die Reismühle Klysat gehört der Klysat Food and Beverage Ltd. und ist ein Reisverarbeitungsbetrieb, der mit seinem Produktionsstandort in Jigawa zur Steigerung der lokalen Reisproduktion beiträgt. Die Reismühle hat ihren Betrieb 2014 aufgenommen und beschäftigt 92 Mitarbeiter. Die Adresse der Mühle lautet km 3, Kadime, Gujungu Road, Hadejia, Jigawa State.

Die Reisverarbeitungsanlage ist an 300 Tagen im Jahr, d. h. in der Regel an sieben Tagen pro Woche rund um die Uhr, in Betrieb; die übrigen Tage werden für die Wartung der Mühle und der Generatoren genutzt. Während der Hauptproduktionsaison ist die Reismühle zu 80 % ausgelastet und produziert etwa 704 Tonnen Rohreis pro Woche. In den Nebensaisons beträgt die Auslastung 20 % und es werden pro Woche 176 Tonnen Rohreis hergestellt.

Der Betrieb ist an das staatliche Stromnetz angeschlossen (dreiphasig; 33 kVA). Der von der Kano Electricity Distribution Company (KEDCO; Stromvertriebsgesellschaft Kano) berechnete Stromtarif beträgt 0,075 EUR/kWh. Die Anlage bezieht an weniger als sechs Stunden pro Tag Netzstrom; die Stromkosten betragen 722 EUR pro Monat.

3. Reismühle JOSAN

Die JOSAN Rice Farms and Mills ist eine Hochleistungsreismühle, die direkt und indirekt von etwa 10.000 Reisbauern beliefert wird und etwa 50.000 Tonnen Reis pro Jahr produziert. Sie erstreckt sich über acht Hektar bei Umumbo in der Local Government Area Ayamelum im Bundesstaat Anambra. Das Unternehmen betreibt eine zweite Reismühle in Ufuma in der Local Government Area Orumba North im selben Bundesstaat.
Die Reismühle produziert normalerweise ca. zehn Stunden pro Tag, in der Hochsaison bis zu 20 Stunden pro Tag. In dieser Zeit wird die Anlage im Zweischichtbetrieb gefahren. Im Januar, Februar, November und Dezember beträgt die Auslastung 100 %, im Rest des Jahres 50 %. Der Betrieb produziert an 310 Tagen im Jahr; an den restlichen Tagen werden routinemäßige Wartungsarbeiten an den Mühlen und Generatoren durchgeführt.

Die Anlage ist nicht an das allgemeine Stromnetz angeschlossen.

Kühlvorrat

Die folgenden Unternehmen wurden kontaktiert:

1. **Cold Care Nigeria Ltd.**

Cold Care Nigeria Ltd. ist im Vertrieb und Service von gewerblichen und industriellen Kühlsystemen tätig. Das Unternehmen liefert und installiert leistungsfähige Kühlsysteme, industrielle Kaltwasser- und Klimaanlagen für Abfüllbetriebe, Brauereien, die Kunststoffindustrie und Eisbereitungsanlagen. Die Adresse lautet 40, NNPC Road, Opposite NNPC Depot, Ejigbo – Lagos; die Koordinaten lauten 6.540234°N, 3.307895°E. Die Gesamtfläche der Anlage beträgt 2.500 m² und die Dachfläche ca. 1.296 m².

Der Standort ist an das staatliche Stromnetz angeschlossen (dreiphasig; 415 V). Pro Tag wird das Unternehmen für etwa sechs bis zwölf Stunden mit Strom versorgt, der zu einem Stromtarif von 0,094 EUR/kW bezogen wird. Das Unternehmen gibt etwa 1.043 EUR pro Monat für Strom aus; der Verbrauch beläuft sich auf rund 10.800 kWh.

2. **Anadariya Industries**

Anadariya Industries ist eine voll vertikal integrierte Geflügelfarm, deren Geschäftstätigkeit die Herstellung von Futtermitteln aus Getreide, die Verarbeitung von Geflügel sowie Kühlvorrat und Logistik umfasst. Die Farm verfügt über eine umfangreiche Infrastruktur für die Haltung von 100.000 Stück Geflügel und die Distribution von gekühltem verarbeitetem Hühnerfleisch im gesamten Norden von Nigeria. Die Adresse lautet km 74, Tiga – Jos Road, Bebeji, Kano State.

Da die Kühlung von Fleisch nicht unterbrochen werden darf, läuft der Betrieb an 365 Tagen pro Jahr rund um die Uhr. Das Unternehmen beschäftigt etwa 100 Mitarbeiter, die in zwei Schichten arbeiten (Schicht 1: 7.00 bis 19.00 Uhr, Schicht 2: 19.00 bis 7.00 Uhr), um die kontinuierliche Produktion und Lagerung des Fleisches zu gewährleisten.

Die Farm ist an das staatliche Stromnetz angeschlossen (dreiphasig; 415 V), wird aber an weniger als sechs Stunden pro Tag mit Strom versorgt. Der von der KEDCO berechnete Stromtarif beträgt 0,075 EUR/kW. Für den Bezug von Strom aus dem Netz gibt das Unternehmen rund 746 EUR pro Monat aus. Die maximale tägliche Leistungsaufnahme für den Betrieb der Farm beträgt ca. 850 kW. Bei geringer Produktion kann der Leistungsbedarf auf ca. 400 kW sinken.
3. Tomato Jos

Das Unternehmen beschäftigt ca. 20 Mitarbeiter und ist in den Nebensaisons von 7 bis 17 Uhr in Betrieb. Während der Erntesaison für Tomaten wird an sieben Tagen pro Woche rund um die Uhr gearbeitet.

Der Betrieb ist nicht an das Stromnetz angeschlossen.

Softdrinks & Mineralwasser

Die folgenden Unternehmen wurden kontaktiert:

1. Chis Stores Ltd.

Die Mitarbeiter arbeiten in einer 12-Stunden-Schicht von 7 bis 19 Uhr bei einer Kapazitätsauslastung von ca. 90 %. Der Betrieb ist an sechs Tagen in der Woche (von Montag bis Samstag), d. h. an 312 Tagen im Jahr, in Betrieb. Von Mai bis September beträgt die Auslastung 50 bis 80 %, im Rest des Jahres 100 %.

2. Big Bottling Company Nigeria Ltd.

Zur Erreichung des nachgefragten Produktionsvolumens von 30.000 Flaschen pro Stunde läuft der Betrieb an sieben Tagen pro Woche rund um die Uhr. Die Produktion erfolgt in zwei 12-Stunden-Schichten (Schicht 1: 7 bis 19 Uhr, Schicht 2: 19 Uhr bis 7 Uhr). Die Anlage ist das ganze Jahr über zu 100 % ausgelastet.

Das Werk ist an das staatliche Stromnetz angeschlossen (dreiphasig; 11 kV und 415 V), deckt seinen gesamten Strombedarf jedoch durch selbst erzeugten Strom. Daher fallen keine Kosten für Netzstrom an.
Kosmetika

1. Starline

Starline hat seinen Sitz in Plot 152 Azikwe Road, Aba, Abia State; die Standortbegehung fand an den Koordinaten 5.132574 °N, 7.371454 °E statt.

Die Produktion läuft werktags (Montag bis Samstag) von 8 bis 17 Uhr; die Produktionsstätte ist an 310 Tagen pro Jahr im Betrieb und das ganze Jahr über (Januar bis Dezember) zu 100 % ausgelastet, um die gewünschte Produktionskapazität zu erreichen. Es wird maximal zehn Stunden am Tag im Einschichtbetrieb gearbeitet.

Der Standort ist an das staatliche Stromnetz angeschlossen (dreiphasig; 33 kVA). Netzstrom steht für weniger als sechs Stunden am Tag zur Verfügung. Der von der Enugu Electricity Distribution Company (EEDC, Stromvertriebsgesellschaft Enugu) berechnete Stromtarif beträgt für Kunden, die dreiphasig mit einer Spannung von 33 kV versorgt werden und einen Maximalbedarf von mehr als 500 kVA HV haben, 0,11 EUR/kWh. Der Standort zahlt monatlich 872 EUR für den Bezug von Netzstrom.

Arzneimittel

Die folgenden Unternehmen wurden kontaktiert:

1. Agary Pharmaceuticals Ltd.

Der Standort produziert an sechs Tagen in der Woche (Montag bis Samstag) von 8 bis 17 Uhr im Einschichtbetrieb. Das Werk ist das ganze Jahr über (Januar bis Dezember) zu 100 % ausgelastet, um die gewünschte Produktionskapazität zu erreichen.

Der Standort ist an das staatliche Stromnetz angeschlossen (dreiphasig; 11 kV) und bezieht weniger als sechs Stunden Netzstrom pro Tag. Der von der EKEDC berechnete Stromtarif beträgt 0,095 EUR/kWh. Die monatlichen Stromkosten belaufen sich im Durchschnitt auf 495 EUR und der monatliche Stromverbrauch auf 5.000 kWh.

2. Cinnamon Drugs

Cinnamon Drugs Ltd. stellt qualitativ hochwertige Gesundheitsprodukte her und erbringt erstklassige Dienstleistungen. Der Standort befindet sich auf einem ein Hektar großen Grundstück am Rande der Stadt Enugu und leistet durch die Herstellung und den Vertrieb von erschwinglichen Qualitätsprodukten einen wichtigen Beitrag zur Gesundheitsversorgung der Bevölkerung. Die Adresse der Fabrik lautet Plot C9, Emene Industrial Layout, Emene, Enugu State.
Die Beschäftigten arbeiten an sechs Tagen in der Woche (Montag bis Samstag) von 8 bis 17 Uhr im Einschichtbetrieb. Das Werk ist von Januar bis Dezember zu 50 % ausgelastet und an 294 Tagen im Jahr in Betrieb.

Der Standort ist an das staatliche Stromnetz angeschlossen (dreiphasig; 415 kV). Der von der EEDC berechnete Stromtarif beträgt für Kunden der Kategorie C2 mit dreiphasiger Stromversorgung und einem Maximalbedarf von 500 kVA LV 0,11 EUR/kWh. Netzstrom steht nur für sechs bis zwölf Stunden pro Tag zur Verfügung. Die monatlichen Kosten für den Strombezug aus dem Netz betragen rund 625 EUR.

Schaumstoffherstellung

1. **JAFCO Nigeria Ltd.**

Die Mitarbeiter arbeiten werktags (Montag bis Samstag) von 8 bis 17 Uhr im Einschichtbetrieb. In den Monaten Januar und Dezember beträgt die Auslastung 100 %, in den anderen Monaten mitunter nur 40 bis 60 %. Die Anlage ist an 260 Tagen im Jahr in Betrieb.

Der Standort ist an das staatliche Stromnetz angeschlossen (dreiphasig; 33 kV). Der von der KADEDCO berechnete Stromtarif beträgt 0,091 EUR/kWh für gewerbliche Kunden der Kategorie C3 (Hochspannung, maximaler Bedarf 11/33 kV). Der Standort bezieht aufgrund der unzureichenden Netzstromversorgung nur rund sechs Stunden Strom aus dem staatlichen Stromnetz.

2. **Harmony Foam**

Produziert wird an 294 Tagen im Jahr (Montag bis Samstag) im Einschichtbetrieb von 8.00 bis 17.00 Uhr.

Der Standort wurde wegen der ständig steigenden Kosten für den zur Stromerzeugung benötigten Dieselkraftstoff stillgelegt. Gespräche mit verschiedenen Ansprechpartnern deuten darauf hin, dass die Geschäftsleitung bereit wäre, den Betrieb wieder aufzunehmen, wenn günstigere Stromquellen zur Verfügung stünden.
Anhang 8: Stakeholder

Im Folgenden sind die Stakeholder aufgeführt, die beim Bau einer Stromerzeugungsanlage zur Eigenstromversorgung in Nigeria einbezogen werden müssen:

Federal Ministry of Power, Works and Housing (FMPWH; Ministerium für Energie, Arbeit und Wohnen)

Das FMPWH hat die Gesamtverantwortung für die Festlegung der Strompolitik. Es hat den Auftrag, für eine ausreichende und zuverlässige Stromversorgung im Land zu sorgen. Zu diesem Zweck realisiert das FMPWH Projekte zum Ausbau und zur Modernisierung der Stromerzeugung, -übertragung und -verteilung und fördert die Entwicklung einer privatwirtschaftlich geführten, wettbewerbsfähigen und effizienten Stromwirtschaft.

In diesem Zusammenhang sind folgende FMPWH-Referate sowie folgende dem FMPWH nachgeordnete Behörden zuständig: die Rural Electrification Agency (REA; Behörde für die Elektrifizierung des ländlichen Raums), das National Power Training Institute of Nigeria (NAPTIN; nationales Aus- und Weiterbildungsinstitut für den Stromsektor), die weitgehend unabhängige Nigerian Electricity Regulatory Commission (NERC; nigerianische Kommission zur Regulierung des Stromsektors), die Nigerian Electricity Management Services Agency (NEMSA; nigerianische Agentur für Elektrizitätsmanagement) und das Department for Renewable and Rural Power Access (Referat für erneuerbare Energien und die Förderung der Elektrifizierung des ländlichen Raums). Das FMPWH koordiniert auch das Inter-Ministerial Committee on Renewable Energy and Energy Efficiency (ICREEE; Interministerieller Ausschuss für erneuerbare Energien und Energieeffizienz).

Nigerian Electricity Regulatory Commission (NERC, nigerianische Kommission zur Regulierung des Stromsektors)

Die NERC ist eine unabhängige Regulierungsbehörde, die 2005 gegründet wurde, um eine effiziente Marktstruktur zu fördern und eine sichere, bedarfsgerechte, zuverlässige und erschwingliche Stromversorgung zu gewährleisten. Die NERC ist für die Erteilung von Genehmigungen und Lizenzen an Unternehmen zuständig, die selbständig Stromerzeugungsanlagen zur Eigenstromversorgung betreiben wollen.

Die Aufgaben der NERC im Überblick:
- Festlegung und Regulierung von Tarifen, Marktreisen und Betriebsrichtlinien
- Erteilung von Lizenzen für die Marktteilnehmer
- Überwachung der Einhaltung der Lizenzbedingungen

Anlaufstelle für:
- Lizenzierung (über 1 MW)
- Strompreise
- Einspeisevergütung für erneuerbare Energien
- Kodizes und Normen
- Marktreigen und -vorschriften
- Verbraucherschutz
- Streitbeilegung
Nigerian Electricity Management Services Agency (NEMSA; nigerianische Agentur für Elektrizitätsmanagement)

Das Hauptmandat der NEMSA besteht darin, gesetzliche Prüfungen und Zertifizierungen von Stromleitungsmasten (Beton, Holz, Stahl) und anderen elektrischen Komponenten und Ausrüstungsgegenständen durchzuführen, bevor sie in Nigeria eingesetzt werden.

Distribution Companies (DisCos; Vertriebsgesellschaften)

Eigentümer/Management des Betriebs

Da der Eigentümer bzw. das Management des Betriebs als Hauptkunde der Stromerzeugungsanlage gelten kann, ist es wichtig, die betrieblichen und finanziellen Bedingungen im Vorfeld klar zu vereinbaren. Die Eigentümer bzw. Manager des jeweiligen Betriebs sind dafür verantwortlich, dass alle Vereinbarungen eingehalten, neue Vereinbarungen wie PPAs angebahnt und die Zahlungen für verkauften Strom genehmigt werden.