Energie in Deutschland
Trends und Hintergründe zur Energieversorgung
Energie in Deutschland
Trends und Hintergründe zur Energieversorgung
Inhaltsverzeichnis

Einleitung .. 6

1. Rahmenbedingungen der Entwicklung ... 7
 1.1. Energiewende ... 7
 1.2. Globale Reserven und Ressourcen ... 8
 1.3. Preise ausgewählter Importenergieträger ... 9
 1.4. Bevölkerungsentwicklung ... 11
 1.5. Wirtschaftswachstum ... 12
 1.6. Witterung .. 12

2. Versorgungs- und Verbrauchsstrukturen ... 14
 2.1. Aufkommen und Bezugsstrukturen von Primärenergie ... 14
 2.2. Verbrauch von Primärenergie in der Energieumwandlung 17
 2.3. Der Endenergieverbrauch ... 19
 2.4. Kraftwerke und Stromnetze ... 23
 2.5. Der Endverbrauch nach Anwendungszwecken ... 26

3. Energieeffizienz ... 27
 3.1. Gesamtwirtschaftliche Energieeffizienz .. 27
 3.2. Effizienz der Stromerzeugung .. 28
 3.3. Energieeffizienz im Endenergieverbrauch ... 29
 3.3.1. Industrie ... 29
 3.3.2. Verkehr ... 30
 3.3.3. Haushalte .. 32
 3.3.4. Gewerbe, Handel und Dienstleistungen .. 33
4. **Energiepreise und -kosten** ... 35

4.1. Energiepreise für Endverbraucher in Deutschland 35
 4.1.1. Erzeugungskosten .. 35
 4.1.2. Transport und Verteilung ... 35
 4.1.3. Steuern und Abgaben .. 36
 4.1.4. EEG und KWK ... 37
 4.1.5. Endenergiepreise nach Kostenkomponenten und Verbrauchergruppen. 39

4.2. Energiekosten/-ausgaben ausgewählter Verbrauchsbereiche 45

4.3. Energieaufkommen und Verwendung in wertmäßiger Betrachtung 46

5. **Energie und Umwelt** ... 48

5.1. Ziele der Energie- und Klimaschutzpolitik ... 48

5.2. Emissionen von Treibhausgasen und Schadstoffen 49

6. **Internationale Aspekte** ...51

6.1. Energiepreise im europäischen Vergleich ... 51

6.2. Energieversorgungsstrukturen in der EU .. 53

6.3. Gesamtwirtschaftliche Effizienz im internationalen Vergleich 54

6.4. Wirkungsgrade der Kraftwerke im internationalen Vergleich 56

6.5. Treibhausgasemissionen und Minderungsziele in der EU 56

7. **Anhang** ...59

Glossar .. 60

Verzeichnis der Tabellen

- Tabelle 1 Status quo und quantitative Ziele der Energiewende 7
- Tabelle 2 Reserven, Ressourcen und Förderung nicht-erneuerbarer Energierohstoffe 8
- Tabelle 3 Bezugsstruktur der Energieimporte ... 15
- Tabelle 4 Einsatz von Energieträgern zur Stromerzeugung 20
Inhaltsverzeichnis

Tabelle 5 Endenergieverbrauch nach Verbrauchergruppen ... 22
Tabelle 6 Energiepreise nach Verbrauchergruppen .. 44
Tabelle 7 Schadstoffemissionen in Deutschland .. 50
Tabelle A1 Umrechnungsfaktoren – Energieeinheiten ... 59
Tabelle A2 Vorzeichen ... 59

Verzeichnis der Schaubilder

Schaubild 1 Regionale Verteilung der Reserven konventioneller fossiler Energieträger 9
Schaubild 2 Preisentwicklung Rohölimporte und Wechselkurseffekt ... 10
Schaubild 3 Preisentwicklung wichtiger Importenergien ... 11
Schaubild 4 Bevölkerung, Haushalte und Haushaltsgröße in Deutschland 13
Schaubild 5 Bruttoinlandsprodukt ... 13
Schaubild 6 Entwicklung der Nettoimporte und des Primärenergieverbrauchs 14
Schaubild 7 Beitrag erneuerbarer Energiequellen zum Primärenergieverbrauch 16
Schaubild 8 Energieflussbild 2011 .. 17
Schaubild 9 Bruttostromerzeugung aller Kraftwerke in Deutschland nach Energieträgern 18
Schaubild 10 Bruttostromerzeugung aus erneuerbaren Energiequellen ... 19
Schaubild 11 Endenergieverbrauch in Deutschland nach Energieträgern 21
Schaubild 12 Installierte Stromerzeugungskapazitäten in Deutschland nach Energieträgern 23
Schaubild 13 Stand der vordringlichen Stromtrassen gemäß Energieausbaugesetz (EnLAG) 25
Schaubild 14 Endenergie nach Anwendungsbereichen ... 26
Schaubild 15 Primärenergieverbrauch in Deutschland je Einwohner und je Einheit Bruttoinlandsprodukt ... 27
Schaubild 16 Wirkungsgrad und spezifischer Energieeinsatz der Stromerzeugung in Deutschland .. 28
Schaubild 17 Entwicklung der Energieeffizienz der Industrie in Deutschland 30
Schaubild 18 Verkehrsleistungen Personen-/Güterverkehr und Energieverbrauch in Deutschland ... 31
Schaubild 19 Kraftstoffverbrauch und CO₂-Emissionen bei Pkw-Neuzulassungen in Deutschland 32
Schaubild 20 Entwicklung des spezifischen Energieverbrauchs privater Haushalte in Deutschland 33
Schaubild 21 Entwicklung der Energieeffizienz im Sektor Gewerbe, Handel, Dienstleistungen 34
Schaubild 22 Preisentwicklung für Strom an der Leipziger EEX .. 36
Schaubild 23 Entwicklung des Fördervolumens nach dem EEG ... 38
Schaubild 24 Strompreise der Industriekunden in Deutschland .. 40
Schaubild 25 Strompreise der privaten Haushalte in Deutschland ... 40
Schaubild 26 Gaspreise der Industriekunden in Deutschland ... 41
Schaubild 27 Gaspreise der privaten Haushalte in Deutschland .. 42
Schaubild 28 Komponenten der Tankstellenpreise für Dieselkraftstoff .. 43
Schaubild 29 Komponenten der Tankstellenpreise für Ottokraftstoff .. 43
Schaubild 30 Energiekosten in der Industrie .. 45
Schaubild 31 Energieausgaben der privaten Haushalte nach Anwendungszwecken 46
Schaubild 32 Energieaufkommen und Verwendung ... 47
Schaubild 33 Treibhausgasemissionen und Minderungsziele für Deutschland (EU-Ziele) 48
Schaubild 34 Entwicklung der Treibhausgasemissionen in Deutschland und deren Abweichung vom Kyoto-Minderungsziel .. 49
Schaubild 35 Energiebedingte CO₂-Emissionen nach Sektoren und Energieträgern 50
Schaubild 36 Erdgaspreise 2011 der Industrie im europäischen Vergleich ... 52
Schaubild 37 Strompreise 2011 der Industrie im europäischen Vergleich ... 52
Schaubild 38 Primärenergieträgerstruktur in der EU 15 ... 53
Schaubild 39 Energieträgerstruktur der Bruttostromerzeugung ausgewählter europäischer Staaten 54
Schaubild 40 Primärenergieverbrauch je Einheit Bruttoinlandsprodukt im internationalen Vergleich 55
Schaubild 41 Primärenergieverbrauch je Einwohner im internationalen Vergleich 55
Schaubild 42 Wirkungsgrade konventioneller Wärmekraftwerke im europäischen Vergleich 56
Schaubild 43: Treibhausgasemissionen (CO₂eq) innerhalb der EU 27 in 2010 im Vergleich zu 1990 (absolut) ohne LULUCF ... 57
Schaubild 44 Abweichung der Emissionen der EU-Mitgliedstaaten zum Kyoto-Ziel 58
Einleitung

Eine wirtschaftliche, sichere und umweltverträgliche Energieversorgung ist Grundlage für die Funktionsfähigkeit unserer Volkswirtschaft, für den Wohlstand der Menschen und für die Zukunftschancen nachfolgender Generationen.

Diese Broschüre befasst sich mit den Rahmenbedingungen und Trends der Entwicklung auf den Energiemärkten in Deutschland seit der Wiedervereinigung im Jahr 1990. Sie soll statistisch fundierte Antworten geben auf Fragen, die sich angesichts der vielfältigen energie- und umweltpolitischen Zielsetzungen stellen, die im Rahmen der „Energiewende“ formuliert worden sind:

Die energiewirtschaftliche Entwicklung in Deutschland wird durch eine Vielzahl von Faktoren geprägt, die sich dem Einfluss inländischer Akteure entziehen. Dazu gehören das globale Energieangebot, die Verfügbarkeit und die Reserven an energetischen Rohstoffen, die politischen Rahmenbedingungen in den Förderregionen und nicht zuletzt die verfügbaren Transport- und Umwandlungskapazitäten für diese Energierohstoffe. Immer wichtiger für die heimische Energieversorgung werden zudem der globale Energiebedarf und die wachsende Nachfrage aufstrebender Entwicklungs- und Schwellenländer, die die Preisdynamik auf den Weltmärkten und damit auch unser Energiepreisniveau maßgeblich mitbestimmen.

Im Inland hängt die energiewirtschaftliche Entwicklung von zahlreichen Faktoren ab, die nur am Rand als Einflussfaktoren wahrgenommen werden. Dazu gehören die Bevölkerungsentwicklung, die Anzahl der Haushalte, die konjunkturelle Entwicklung, der Strukturwandel in der Wirtschaft sowie technologische Entwicklungen. Hinzu kommen institutionelle, rechtliche und politische Rahmenbedingungen, die als Eckpfeiler der künftigen Energiepolitik fungieren. Im folgenden Abschnitt sollen diese Einflussfaktoren näher beleuchtet werden.

1.1. Energiewende

Leitbild der deutschen Energiepolitik ist eine sichere, bezahlbare und umweltverträgliche Energieversorgung, die auch in Zukunft Basis für Wachstum und Wettbewerbsfähigkeit des Industriestandorts Deutschland ist.

Um diese Ziele zu erreichen, sind erhebliche Anstrengungen erforderlich. Entscheidend für den Umbau des Energiesystems ist der Ausbau der Stromnetze. Denn die erneuerbaren Energien werden oft weit von den Verbrauchszentren entfernt produziert. Dies gilt ins-

<table>
<thead>
<tr>
<th>Tabelle 1: Status quo und quantitative Ziele der Energiewende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treibhausgasemissionen</td>
</tr>
<tr>
<td>Treibhausgasemissionen (gegenüber 1990)</td>
</tr>
<tr>
<td>-26,4 %</td>
</tr>
<tr>
<td>Effizienz</td>
</tr>
<tr>
<td>Primärenergieverbrauch (gegenüber 2008)</td>
</tr>
<tr>
<td>Energieproduktivität (Endenergieverbrauch)</td>
</tr>
<tr>
<td>Brutto-Stromverbrauch (gegenüber 2008)</td>
</tr>
<tr>
<td>Anteil der Stromerzeugung aus Kraft-Wärme-Kopplung (2010)</td>
</tr>
<tr>
<td>Gebäudebestand</td>
</tr>
<tr>
<td>Wärmebedarf (k.A.)</td>
</tr>
<tr>
<td>Primärenergiebedarf (k.A.)</td>
</tr>
<tr>
<td>Sanierungsraten</td>
</tr>
<tr>
<td>rund 1 % pro Jahr</td>
</tr>
<tr>
<td>Verkehrsbereich</td>
</tr>
<tr>
<td>Endenergieverbrauch (gegenüber 2005)</td>
</tr>
<tr>
<td>Anzahl Elektrofahrzeuge</td>
</tr>
<tr>
<td>rund -0,5 %</td>
</tr>
<tr>
<td>ca. 6.600</td>
</tr>
<tr>
<td>Erneuerbare Energien</td>
</tr>
<tr>
<td>Anteil am Bruttostromverbrauch</td>
</tr>
<tr>
<td>20,3 %</td>
</tr>
<tr>
<td>Anteil am Bruttoendenergieverbrauch</td>
</tr>
<tr>
<td>12,1 %</td>
</tr>
<tr>
<td>18 %</td>
</tr>
</tbody>
</table>
besondere für die Windenergie, die hauptsächlich in Norddeutschland erzeugt wird und dann in den Süden und Westen des Landes transportiert werden muss.

Für eine zuverlässige Energieversorgung werden neben den erneuerbaren Energien in Zukunft auch weiterhin hochflexible und moderne fossile Kraftwerke erforderlich sein. Denn der Wind weht nicht ständig und die Sonne scheint nicht immer, so dass die Energie aus Erneuerbaren nicht immer verfügbar ist.

Das Zusammenspiel von erneuerbaren Energien mit der übrigen Energieversorgung, insbesondere bei den Stromnetzen und den Kraftwerken, muss verbessert werden. Darüber hinaus müssen die Kosten des Fördersystems für die Erneuerbaren auf ein vertretbares Maß begrenzt werden.

Ferner gilt es, die Energieeffizienz zu steigern, um so Strom und Wärme z. B. in Gebäuden und in der Produktion einzusparen.

Forschung kann schließlich helfen, neue Technologien zu entwickeln, die die schwankenden Energieträger besser in das Netz integrieren und damit zur Versorgungssicherheit beitragen.

Seit Verabschiedung des Energiekonzepts hat die Bundesregierung rund 160 Maßnahmen angestoßen, von denen viele innerhalb kurzer Zeit umgesetzt werden.

1.2. Globale Reserven und Ressourcen

Wesentliche Voraussetzung für die Versorgungssicherheit, aber auch für eine verträgliche Preisentwicklung auf den Weltmärkten, sind ausreichende Reserven und Ressourcen an Primärenergieträgern. Dabei bezeichnen die Reserven jene Mengen an Energierohstoffen, die durch Explorationsaktivitäten nachgewiesen wurden und mithilfe der gegenwärtigen technischen Möglichkeiten wirtschaftlich gewonnen werden können. Die Höhe der Reserven ist folglich für die aktuelle und in naher Zukunft bestehende Versorgungssituation aussagefähig als die Höhe der Ressourcen. Denn Ressourcen bezeichnen jene Menge an Energierohstoffen, die entweder derzeit aufgrund geologischer Indikatoren vermutet wird, aber noch nicht nachgewiesen ist, oder in Anbetracht der Gewinnungskosten gegenwärtig noch nicht wirtschaftlich gewonnen werden kann. Für den zukünftigen Verbrauch stehen allerdings potenziell beide, nämlich die Summe aus Reserven und zumindest Teilen der Ressourcen, zur Verfügung.

Die weltweiten Reserven an konventionellen Energie- rohstoffen wurden von der Bundesanstalt für Geo- wissenschaften und Rohstoffe (BGR) im Jahr 2010 auf 35.445 Exajoule (EJ; = 10^18 Joule) geschätzt, was dem 79-fachen Weltprimärenergieverbrauch des Jahres 2010 an fossilen Energierohstoffen entspricht. Etwa 60% dieser Reserven entfallen auf Stein- und Braunkohle, ein geringerer Teil der Reserven auf flüssige und gasförmige Kohlenwasserstoffe (ohne Berücksichtigung von un-

Tabelle 2: Reserven, Ressourcen und Förderung nicht-erneuerbarer Energierohstoffe in EJ

<table>
<thead>
<tr>
<th>Jahreszahl</th>
<th>Rohöl</th>
<th>Erdgas</th>
<th>Kohle</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserven</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>konventionell</td>
<td>6.351</td>
<td>7.056</td>
<td>5.105</td>
</tr>
<tr>
<td>nicht-konventionell</td>
<td>2.761</td>
<td>2.011</td>
<td>60</td>
</tr>
<tr>
<td>Ressourcen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>konventionell</td>
<td>3.525</td>
<td>5.975</td>
<td>6.879</td>
</tr>
<tr>
<td>nicht-konventionell</td>
<td>10.460</td>
<td>11.150</td>
<td>48.645</td>
</tr>
</tbody>
</table>

Quelle: BGR

1.3. Preise ausgewählter Importenergieträger

Verstärkt wird dieser Preiseffekt durch die Marktmacht der OPEC-Staaten, die einen wachsenden Beitrag zur weltweiten Ölversorgung leisten. Infolge der ungleichen regionalen Verteilung der Rohöl- und Erdgasreserven wird ein Ausweichen der Verbraucherländer auf andere Bezugsquellen schwieriger. Erhebliche politische und wirtschaftliche Unsicherheiten in den Produzenten-

Der Rohölpreis ist nach wie vor Leitpreis für viele andere Energieprodukte. Deshalb sind auch bei den Einfuhrpreisen für sämtliche Mineralölprodukte, darunter Benzin, Diesel und leichtes Heizöl, die gleichen Entwicklungen zu beobachten (vgl. Schaubild 3, Seite 11).
1. Rahmenbedingungen der Entwicklung

1.4. Bevölkerungsentwicklung

Von erheblicher Bedeutung für den Energieverbrauch ist die demografische Entwicklung. Je mehr Menschen in Deutschland leben, umso größer ist die zu beheizende

1. Rahmenbedingungen der Entwicklung

1.5. Wirtschaftswachstum

1.6. Witterung

1. Rahmenbedingungen der Entwicklung

Schaubild 4: Bevölkerung, Haushalte und Haushaltsgröße in Deutschland 1990–2011, in Mio. und Personen je Haushalt

Quelle: Destatis und BMWi-Energiedaten, Tabelle 1
2. Versorgungs- und Verbrauchsstrukturen

2.1. Aufkommen und Bezugsstrukturen von Primärenergie

Die Reserven und Ressourcen an Braunkohle in Deutschland werden von der Bundesanstalt für Geowissenschaften und Rohstoffe zusammen auf ca. 77 Mrd. t geschätzt, von denen bei den gegenwärtigen Energiepreisen mehr als 40 Mrd. t wirtschaftlich gewonnen werden können. Auch bei Steinkohle sind die Ressourcen mit mehr als 83 Mrd. t so reichlich, dass der gegenwärtige Verbrauch von knapp 60 Mio. t allein aus heimischer Produktion gedeckt werden könnte – wenn die Förderkosten nicht erheblich höher wären als der Weltmarktpreis.

Für Erdgas wurden die wirtschaftlich gewinnbaren Vorräte von der Bundesanstalt für Geowissenschaften und Rohstoffe im Jahr 2011 auf 146 Mrd. m³ geschätzt.

Schaubild 6: Entwicklung der Nettoimporte und des Primärenergieverbrauchs 1990–2011, in Prozent und in PJ

Quelle: AEGEB/AGEE-Stat, siehe auch BMWi-Energiedaten, Tabelle 3

Besonders auffällig sind die veränderten Versorgungsstrukturen bei der Steinkohle. Stammten 1990 noch über 90% aus heimischer Förderung, wird die inländische Nachfrage inzwischen zu knapp 80% aus Importen gedeckt.

So stammen die Erdgasimporte im Wesentlichen aus drei Ländern – Norwegen, den Niederlanden und Russland (bis 1991 Sowjetunion) – wobei sich die Struktur der Importe in den letzten 15 Jahren deutlich zugunsten der russischen und norwegischen Lieferungen verschoben hat; während Anfang der neunziger Jahre weniger als 95 TWh aus norwegischen Quellen stammen, erreichten die Lieferungen 2011 gut 342 TWh. Der quantitativ bedeutendste Lieferant ist allerdings Russland, das mit rund 395 TWh knapp 40% der Importe stellt (vgl. Tabelle 3). Beide Länder stellen damit zusammen fast 74% des Gasaufkommens in Deutschland.

Eine vergleichbare Bedeutung haben diese beiden Länder auch für die Rohölimporte: 46% des nach Deutschland importierten Rohöls stammt aus russischen und

Tabelle 3: Bezugsstruktur der Energieimporte 1991–2011

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Steinkohle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europa</td>
<td>41,1%</td>
<td>42,4%</td>
<td>43,0%</td>
<td>27,7%</td>
<td>20,4%</td>
<td>15,1%</td>
</tr>
<tr>
<td>Nordamerika</td>
<td>10,7%</td>
<td>15,8%</td>
<td>3,4%</td>
<td>7,4%</td>
<td>15,5%</td>
<td>20,9%</td>
</tr>
<tr>
<td>Südafrika</td>
<td>32,7%</td>
<td>23,7%</td>
<td>15,7%</td>
<td>21,1%</td>
<td>7,4%</td>
<td>6,0%</td>
</tr>
<tr>
<td>Australien</td>
<td>7,7%</td>
<td>5,1%</td>
<td>14,3%</td>
<td>10,7%</td>
<td>9,2%</td>
<td>9,1%</td>
</tr>
<tr>
<td>Russland</td>
<td>1,2%</td>
<td>1,1%</td>
<td>1,1%</td>
<td>19,1%</td>
<td>24,9%</td>
<td>21,6%</td>
</tr>
<tr>
<td>Kolumbien</td>
<td>2,4%</td>
<td>5,6%</td>
<td>9,2%</td>
<td>7,9%</td>
<td>17,7%</td>
<td>23,3%</td>
</tr>
<tr>
<td>Sonstige Länder</td>
<td>4,2%</td>
<td>5,6%</td>
<td>9,2%</td>
<td>6,1%</td>
<td>4,9%</td>
<td>4,0%</td>
</tr>
<tr>
<td>Summe in Mio. t</td>
<td>16,8</td>
<td>17,7</td>
<td>29,3</td>
<td>39,3</td>
<td>44,6</td>
<td>45,0</td>
</tr>
<tr>
<td>Rohöl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naher Osten</td>
<td>20,5%</td>
<td>12,8%</td>
<td>13,0%</td>
<td>7,1%</td>
<td>5,8%</td>
<td>5,2%</td>
</tr>
<tr>
<td>Afrika</td>
<td>30,5%</td>
<td>23,5%</td>
<td>20,6%</td>
<td>18,6%</td>
<td>16,5%</td>
<td>16,7%</td>
</tr>
<tr>
<td>Venezuela</td>
<td>6,3%</td>
<td>4,0%</td>
<td>1,8%</td>
<td>1,2%</td>
<td>1,3%</td>
<td>1,2%</td>
</tr>
<tr>
<td>Russland</td>
<td>15,8%</td>
<td>20,5%</td>
<td>28,8%</td>
<td>34,1%</td>
<td>36,3%</td>
<td>38,2%</td>
</tr>
<tr>
<td>Norwegen</td>
<td>9,8%</td>
<td>21,1%</td>
<td>18,0%</td>
<td>15,4%</td>
<td>9,4%</td>
<td>8,2%</td>
</tr>
<tr>
<td>Großbritannien</td>
<td>15,8%</td>
<td>17,8%</td>
<td>12,5%</td>
<td>13,0%</td>
<td>14,0%</td>
<td>14,0%</td>
</tr>
<tr>
<td>Sonstige Länder</td>
<td>1,4%</td>
<td>0,4%</td>
<td>5,3%</td>
<td>10,5%</td>
<td>16,6%</td>
<td>16,4%</td>
</tr>
<tr>
<td>Summe in Mio. t</td>
<td>88,8</td>
<td>100,6</td>
<td>103,6</td>
<td>112,2</td>
<td>93,3</td>
<td>90,5</td>
</tr>
<tr>
<td>darunter OPEC</td>
<td>49,8%</td>
<td>30,5%</td>
<td>22,2%</td>
<td>20,1%</td>
<td>17,7%</td>
<td>40,1%</td>
</tr>
<tr>
<td>Erdgas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niederlande</td>
<td>38,3%</td>
<td>32,7%</td>
<td>21,2%</td>
<td>21,5%</td>
<td>20,4%</td>
<td>22,1%</td>
</tr>
<tr>
<td>Norwegen</td>
<td>16,5%</td>
<td>18,2%</td>
<td>26,1%</td>
<td>22,1%</td>
<td>36,6%</td>
<td>34,4%</td>
</tr>
<tr>
<td>Russland</td>
<td>43,6%</td>
<td>46,8%</td>
<td>46,7%</td>
<td>41,7%</td>
<td>37,8%</td>
<td>39,8%</td>
</tr>
<tr>
<td>Übrige</td>
<td>1,6%</td>
<td>2,3%</td>
<td>7,0%</td>
<td>4,7%</td>
<td>5,1%</td>
<td>3,7%</td>
</tr>
<tr>
<td>Summe in TWh</td>
<td>573,2</td>
<td>715,0</td>
<td>823,6</td>
<td>950,2</td>
<td>986,5</td>
<td>992,3</td>
</tr>
</tbody>
</table>

* einschließlich Steinkohlenbriketts und -koks
Quelle: Berechnungen von EEFA nach Statistik der Kohlenwirtschaft, BAFA, Destatis, vgl. auch BMWi-Energiedaten, Tabellen 13, 17 und 19
norwegischen Quellen. Die Bezüge aus OPEC-Staaten erreichen nicht einmal die Hälfte dieser Mengen.

An besonderer Bedeutung für die Steinkohleneinführungen hat Kolumbien gewonnen, das 2011 mit 23,4 % den größten Anteil der Importe stellte. Größere Beiträge zur Marktversorgung stammen weiterhin aus Russland (21,6 %) und Nordamerika (20,9 %).

Schaubild 7: Beitrag erneuerbarer Energiequellen zum Primärenergieverbrauch 1990–2011, in Prozent

*vorläufig
Quelle: Berechnungen EEFA nach AGEB, siehe auch BMWi-Energiedaten, Tabelle 20
2.2. Verbrauch von Primärenergie in der Energieumwandlung

Die importierten oder im Inland gewonnenen Primärenergieträger können in der Regel nicht unmittelbar genutzt werden, sondern müssen verschiedene Umwandlungsprozesse durchlaufen, um schließlich in veredelter Form als Endenergie zum Antrieb von Maschinen, Fahrzeugen und Produktionsanlagen, als Prozessenergie oder zur Heizung von Wohnungen und Gebäuden genutzt werden zu können (vgl. Schaubild 8).

Der Anteil der erneuerbaren Energieträger am Primärenergieverbrauch liegt bei 11,0 %. Abweichungen in den Summen sind rundungsbedingt.

* alle Zahlen vorläufig/geschätzt

Der quantitativ bedeutendste Teil dieser Umwandlungskette ist die Stromerzeugung. In der Elektrizitäts-erzeugung in Deutschland (vgl. Schaubild 9, Seite 18) dominierte im Jahr 2012 der Einsatz von Kernenergie (16 %), Stein- (19,1 %) und Braunkohle (25,6 %).

Diese Struktur ist das Ergebnis von langfristigen Investitionsentscheidungen und kurzfristigen Einsatzplänen, aber auch von politischen Einflussmaßnahmen. Da die Lebensdauer der Anlagen je nach Brennstoff und Fahrweise 35 Jahre und mehr erreichen kann, ist die Zusammensetzung des Kraftwerksparks zu einem

Schaubild 8: Energieflussbild 2011
für die Bundesrepublik Deutschland in PJ

Der Anteil der erneuerbaren Energieträger am Primärenergieverbrauch liegt bei 11,0 %.
Abweichungen in den Summen sind rundungsbedingt.
* alle Zahlen vorläufig/geschätzt

Quelle: Arbeitsgemeinschaft Energiebilanzen 10/2012
bestimmten Zeitpunkt das Ergebnis ökonomischer, ökologischer, regionaler und energiepolitischer Einflussfaktoren, die z. T. weit in die Vergangenheit zurückreichen. So ist die Entscheidung für den Bau von Steinkohlkraftwerken bei mehr als der Hälfte der gegenwärtigen Anlagen vor zwanzig Jahren und mehr gefallen; zu einer Zeit also, als für die Steinkohlenstromung noch grundlegend andere Rahmenbedingungen galten als heute. Die kurzfristige Einsatzplanung der Kraftwerke im Rahmen eines gegebenen Anlagenparks hängt allein von den variablen Kosten (die von den Brennstoffkosten dominiert werden) ab.

Braunkohle und Kernbrennstoffe verursachen im Vergleich zu anderen Brennstoffen relativ niedrige variable Kosten. Diese Stromerzeugungstechniken werden deshalb ausschließlich im Dauerbetrieb (zwischen 7.000 Stunden bei Braunkohle und 8.000 Stunden bei Kernenergie) genutzt. Somit entfällt mehr als die Hälfte der Erzeugung auf diese drei Energieträger bzw. Techniken.

Aus regenerativen Energiequellen wurden 2012
135 TWh an Strom bereitgestellt. Besonders dynamisch
hat sich die Stromerzeugung aus Windkraftanlagen
und Biomasse entwickelt (vgl. Schaubild 10). Insgesamt
erreicht die Stromerzeugung aus erneuerbaren
Energiequellen, gemessen am Bruttostromverbrauch,
inzwischen eine Größenordnung von 20,5 % (2011).
Gemessen an der Bruttostromerzeugung lag der Anteil
erneuerbarer Energien im Jahr 2012 bei 22 %.

Zur Erzeugung von 612 Mrd. kWh elektrischer Energie
wurden im Jahr 2011 in den Kraftwerken (der allge-
meinen Versorgung und der Industrie) Brennstoffe
mit einem Energieäquivalent von 5.200 PJ eingesetzt;
dies entspricht 39 % des gesamten Primärenergie-
verbrauchs. Entsprechend der skizzierten Erzeugungs-
struktur entfielen rund 27 % des Energieeinsatzes in
der Stromerzeugung auf Braunkohle, 22 % auf Kern-
brennstoffe, 19 % auf Steinkohle und nur etwa 12 % auf
Gas sowie 19 % auf übrige Energieträger (vgl. Tabelle 4,
Seite 20).

Erdgas und Steinkohle dominieren den Einsatz in der
Fernwärmeerzeugung insbesondere auf Basis der
Kraft-Wärme-Kopplung. Die gekoppelte Erzeugung
von Strom und Wärme ist in Deutschland sowohl in
der Industrie als auch in der öffentlichen Versorgung
von Bedeutung. Gegenwärtig (2011) stammen etwa
15 % der gesamten Bruttostromerzeugung aus Kraft-
Wärme-Kopplungsanlagen.

2.3. Der Endenergieverbrauch

Umfang und Struktur der Endenergienachfrage hän-
gen von einer Vielzahl von Faktoren ab, die von der
Industriestruktur über Siedlungs- und Verkehrsstruk-
turen bis hin zu Witterungsbedingungen reichen. Die
historisch gewachsene Industriestruktur in Deutsch-
land mit ihrem Schwerpunkt auf der Produktion von
industriellen Grundstoffen wie Stahl, Zement, Chlor,
Aluminium oder Kupfer prägt auch gegenwärtig noch
den industriellen Energieverbrauch, auch wenn die
Bedeutung dieser Prozesse im Verlauf des sektoralen

Im Kraftstoffmarkt fällt dem Einsatz von Biokraftstoffen und hier vor allem von Biodiesel eine gewisse Bedeutung zu. Der biogene Anteil am gesamten Kraftstoffmarkt hat einen Marktanteil von knapp 7%, der Anteil von Biodiesel im Dieselmarkt erreicht knapp 7,4%.

Versorgungs- und Verbrauchsstrukturen

Tabelle 5: Endenergieverbrauch nach Verbrauchergruppen 1990–2011, in PJ

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrie</td>
<td>308</td>
<td>299</td>
<td>199</td>
<td>362</td>
<td>120</td>
<td>119</td>
</tr>
<tr>
<td>Verkehr</td>
<td>2.329</td>
<td>2.554</td>
<td>2.681</td>
<td>2.448</td>
<td>2.369</td>
<td>2.385</td>
</tr>
<tr>
<td>Handel, Gewerbe</td>
<td>603</td>
<td>550</td>
<td>406</td>
<td>364</td>
<td>314</td>
<td>282</td>
</tr>
<tr>
<td>Haushalte</td>
<td>740</td>
<td>902</td>
<td>779</td>
<td>689</td>
<td>563</td>
<td>476</td>
</tr>
<tr>
<td>Endenergieverbrauch (gesamt)</td>
<td>3.980</td>
<td>4.305</td>
<td>4.065</td>
<td>3.663</td>
<td>3.367</td>
<td>3.262</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gase</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrie</td>
<td>916</td>
<td>929</td>
<td>972</td>
<td>865</td>
<td>915</td>
<td>924</td>
</tr>
<tr>
<td>Verkehr</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Handel, Gewerbe</td>
<td>302</td>
<td>406</td>
<td>454</td>
<td>397</td>
<td>450</td>
<td>396</td>
</tr>
<tr>
<td>Haushalte</td>
<td>633</td>
<td>925</td>
<td>984</td>
<td>1.011</td>
<td>1.043</td>
<td>737</td>
</tr>
<tr>
<td>Endenergieverbrauch (gesamt)</td>
<td>1.871</td>
<td>2.260</td>
<td>2.410</td>
<td>2.276</td>
<td>2.417</td>
<td>2.067</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kohle</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrie</td>
<td>868</td>
<td>480</td>
<td>445</td>
<td>355</td>
<td>398</td>
<td>381</td>
</tr>
<tr>
<td>Verkehr</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Handel, Gewerbe</td>
<td>199</td>
<td>46</td>
<td>19</td>
<td>7</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Haushalte</td>
<td>363</td>
<td>104</td>
<td>48</td>
<td>32</td>
<td>54</td>
<td>53</td>
</tr>
<tr>
<td>Endenergieverbrauch (gesamt)</td>
<td>1.431</td>
<td>629</td>
<td>513</td>
<td>395</td>
<td>462</td>
<td>448</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strom</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrie</td>
<td>748</td>
<td>686</td>
<td>748</td>
<td>823</td>
<td>799</td>
<td>792</td>
</tr>
<tr>
<td>Verkehr</td>
<td>49</td>
<td>58</td>
<td>57</td>
<td>58</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Handel, Gewerbe</td>
<td>419</td>
<td>447</td>
<td>504</td>
<td>474</td>
<td>529</td>
<td>533</td>
</tr>
<tr>
<td>Haushalte</td>
<td>422</td>
<td>458</td>
<td>470</td>
<td>509</td>
<td>510</td>
<td>503</td>
</tr>
<tr>
<td>Endenergieverbrauch (gesamt)</td>
<td>1.638</td>
<td>1.648</td>
<td>1.780</td>
<td>1.864</td>
<td>1.899</td>
<td>1.887</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Erneuerbare Energien</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrie</td>
<td>15</td>
<td>10</td>
<td>14</td>
<td>88</td>
<td>140</td>
<td>153</td>
</tr>
<tr>
<td>Verkehr</td>
<td>0</td>
<td>2</td>
<td>12</td>
<td>77</td>
<td>121</td>
<td>117</td>
</tr>
<tr>
<td>Handel, Gewerbe</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>Haushalte</td>
<td>39</td>
<td>96</td>
<td>171</td>
<td>196</td>
<td>117</td>
<td>277</td>
</tr>
<tr>
<td>Endenergieverbrauch (gesamt)</td>
<td>53</td>
<td>110</td>
<td>201</td>
<td>370</td>
<td>617</td>
<td>588</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Übrige*</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrie</td>
<td>102</td>
<td>70</td>
<td>43</td>
<td>221</td>
<td>220</td>
<td>256</td>
</tr>
<tr>
<td>Verkehr</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Handel, Gewerbe</td>
<td>172</td>
<td>128</td>
<td>92</td>
<td>185</td>
<td>139</td>
<td>88</td>
</tr>
<tr>
<td>Haushalte</td>
<td>186</td>
<td>170</td>
<td>131</td>
<td>154</td>
<td>189</td>
<td>148</td>
</tr>
<tr>
<td>Endenergieverbrauch (gesamt)</td>
<td>460</td>
<td>369</td>
<td>266</td>
<td>559</td>
<td>548</td>
<td>491</td>
</tr>
</tbody>
</table>

* Fernwärme und sonstige Energieträger
** vorläufig
Quelle: AGEB

4 Vgl. AGEB, Satellitenbilanz Erneuerbare Energieträger: www.ag-energiebilanzen.de
2.4. Kraftwerke und Stromnetze

Im Jahr 2011 waren in Deutschland Kraftwerke (Allgemeine Versorgung, Industriekraftwerke und Einspeiser) mit einer elektrischen Bruttoleistung in Höhe von 167 GW installiert. Unterteilt nach Energieträgern zeigt sich, dass die Windkraft mit einem Anteil von 17,4 % die Kapazität der Kraftwerke dominiert, es folgen die Steinkohle mit 16,9 %, die Photovoltaik mit 14,3 %, Erdgas mit 13 %, Braunkohle mit 12,2 %, die übrigen Energieträger wie z.B. Biomasse usw. mit 9,2 % und Wasser mit 6,6 %.

Zusammengenommen erreichen Windkraft- und Photovoltaikanlagen gemessen an der gesamten Kraftwerksleistung einen Anteil von 24 % (vgl. Schaubild 12).

Schaubild 12: Installierte Stromerzeugungskapazitäten in Deutschland nach Energieträgern
2005 und 2011, in GW, Allgemeine Versorgung, Industrie und Einspeiser

Quelle: Berechnungen EEGA nach Statistisches Bundesamt
Die Kraftwerksstruktur in Deutschland ist über viele Jahrzehnte historisch gewachsen. Grundsätzlich konzentriert sich die Stromerzeugung aus Gründen der Versorgungssicherheit und Wirtschaftlichkeit auf die Regionen, die auch die Verbrauchsschwerpunkte darstellen. Des Weiteren ist davon auszugehen, dass die Standortwahl auch von der Verfügbarkeit des Energie trägers (Brennstoff) beeinflusst wird. In Deutschland geförderte Braunkohle wird zu 92% in grubennahen Kraftwerken (Nordrhein-Westfalen, Rheinland, Brandenburg, Sachsen-Anhalt) zur Strom- und Wärmeerzeugung verfeuert. Küstennahe Steinkohlekraftwerke setzen vor allem Importkohle als Brennstoff ein. Windenergie lässt sich am effizientesten in den norddeutschen Küstenregionen oder auf See („offshore“) zur Stromerzeugung nutzen.\(^5\)

Der Bedarf an neuen und auszubauenden Stromnetzen wurde erstmals in dem 2009 beschlossenen Gesetz zum Ausbau von Energieleitungen (EnLAG) festgehalten. Hier sind 24 konkrete Projekte benannt, die zeitnah realisiert werden sollen, um die Sicherheit und Stabilität der Stromversorgung angesichts der sich rasch ändernden Erzeugungsstruktur zu gewährleisten. Der aktuelle Stand dieser Netzausbauprojekte ist Schaubild 13 zu entnehmen.

Zentraler Baustein des neuen Netzentwicklungsplans sind Leitungen, die mittels Höchstspannungsgleichstromübertragung, häufig als Stromautobahnen bezeichnet, künftig den im Norden erzeugten Windstrom in die Verbrauchszentren im Westen und Süden des Landes transportieren sollen.

Quelle: Bundesnetzagentur
2.5. Der Endverbrauch nach Anwendungs­zwecken

Der Prozess der Umwandlung endet somit nicht mit der Lieferung von Energie an die Letztverbraucher. Vielmehr wandeln diese unter Einsatz unterschiedlicher Kapitalgüter (Industrieanlagen, Pkw oder Heizungsanlagen) die End­ in Nutzenergie um, also z. B. Strom in Antriebsenergie oder Licht. Der End­energieverbrauch kann nach den Anwendungsbereichen differenziert werden. Dabei zeigt sich ein relativ heterogenes Bild der Nutzenergieverwendung (vgl. Schaubild 14). In der Industrie wird der mit Abstand größte Teil des Energieverbrauchs als Prozesswärme (66 %) und zu Antriebszwecken (22 %) genutzt. Hingegen dominiert bei den privaten Haushalten der Einsatz zur Beheizung von Wohnraum mit einem Anteil von 73 % am gesamten Energieverbrauch. Im Verkehrssektor werden 99 % als mechanische (Antriebs­)Energie genutzt.

Schaubild 14: Endenergie nach Anwendungsbereichen
2011, in Prozent

<table>
<thead>
<tr>
<th>Industrie</th>
<th>Gewerbe, Handel, Dienstleistungen</th>
<th>Haushalte</th>
<th>Verkehr</th>
<th>gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raumwärme</td>
<td>Warmwasser</td>
<td>sonstige Prozesswärme</td>
<td>Kälteanwendungen</td>
<td>Mechanische Energie</td>
</tr>
</tbody>
</table>

Quelle: AGEB, siehe auch BMWi-Energiedaten, Tabelle 7
3. Energieeffizienz

3.1. Gesamtwirtschaftliche Energieeffizienz

Die alleinige Betrachtung des Primärenergieverbrauchs als absolute Größe stellt weder im Rahmen internationaler Vergleiche noch zur Beurteilung der energiewirtschaftlichen Entwicklung eines Landes im Zeitverlauf eine geeignete Basis dar. Aussagekräftiger erscheinen der Primärenergieverbrauch pro Kopf sowie das Verhältnis zwischen Energieverbrauch einerseits und Wirtschaftsleistung andererseits, hier gemessen als das Verhältnis von Primärenergieverbrauch zum Bruttoinlandsprodukt (Energieintensität).

Quelle: AGEB und DESTATIS, siehe auch BMWi-Energiedaten, Tabelle 8
3.2. Effizienz der Stromerzeugung

Schaubild 16: Wirkungsgrad und spezifischer Energieeinsatz der Stromerzeugung* in Deutschland 1990–2011, in Prozent und MJ/kWh

* gesamte Stromerzeugung (Kraftwerke der allgemeinen Versorgung und Industriekraftwerke) ** vorläufig, z.T. geschätzt
Quelle: Berechnungen von EEFA nach AGEB und DESTATIS, siehe auch BMWi-Energiedaten, Tabelle 8
3. Energieeffizienz

3.3. Energieeffizienz im Endenergieverbrauch

3.3.1. Industrie

3.3.2. Verkehr

Im motorisierten Individualverkehr beispielsweise werden Effizienzsteigerungen innerhalb von rund 15 Jahren wirksam, da der gesamte Bestand an älteren Fahrzeugen in diesem Zeitraum durch effizientere Neufahrzeuge ersetzt werden kann. Je nach Alter des stillgelegten Fahrzeugs konnte mit diesem Ersatz eine erhebliche Verbrauchsreduktion verbunden sein; so betrug nach Angaben des Kraftfahrtbundesamtes (KBA) der Durchschnittsverbrauch neu zugelassener Fahrzeuge mit Ottomotor im Jahr 2011 nur noch rund 6,2 Liter/100 km, während fünfzehn Jahre zuvor neu zugelassene Fahrzeuge noch fast 1,5 Liter/100 km mehr benötigten (vgl. Schaubild 19, Seite 32).

Für den Personenverkehr kommt hinzu, dass mit dem Dieselmotor eine Technik zur Verfügung steht, die im Vergleich zum Ottomotor deutlich effizienter ist und in den letzten Jahren massive Marktanteile gewinnen konnte. Lag der Anteil der Neuzulassungen von Diesel-

6 Laut Kraftfahrtbundesamt legten im Zeitraum von 2003 bis 2011 kleinere Hubraumklassen bis 1.119 ccm bei den Neuzulassungen um 20 % zu, Pkw mit Hubräumen von mehr als 2.499 ccm verzeichneten hingegen einen Rückgang um knapp 14 %.
bundesamt bei den Neuzulassungen um 65,7 % zu, während etwa der Anteil der Sportwagen um 26 % rückläufig war.

3.3.3. Haushalte

Der Energieeinsatz der privaten Haushalte umfasst die Verbräuche für die Raumheizung, Warmwasseraufbereitung und sonstige Prozesswärme (z. B. Kochen), den Betrieb von Haushaltsgeräten und Beleuchtungszwecke. Dominierender Anwendungszweck ist mit einem Anteil von etwa 73 % am Endenergieverbrauch des Sektors die Beheizung von Wohnraum, auf den sich die folgenden Ausführungen konzentrieren. Der Energieverbrauch für Raumwärmezwecke ergibt sich formal aus der Zahl der beheizten Wohnungen, der durchschnittlichen Fläche pro Wohnung sowie dem spezifischen Wärmeverbrauch pro m² Wohnfläche.

Der spezifische Wärmeverbrauch pro m² Wohnfläche ist die zentrale Effizienzkennziffer in diesem Verbrauchssegment, da dieser eine Vielzahl von Einflussgrößen widerspiegelt, die sich relativ grob in einerseits überwiegend technisch/rechtlich vorgegebene Faktoren und andererseits ökonomische Faktoren unterteilen lassen. Zur ersten Kategorie zählt der in W/m² gemessene Wärmebedarf sowie der Wirkungsgrad der Heizungsanlage, zur zweiten Kategorie gehören die Jahresbenutzungsstunden sowie die Kosten des jeweiligen Heizsystems.

Der Einfluss der Witterungsverhältnisse, speziell der Außentemperaturen, spiegelt sich im Verlauf des spezifischen Energieverbrauchs für die Raumheizung deutlich wider. In Jahren mit langer Heizperiode infolge eines harten Winters ist der spezifische Energieverbrauch durch deutliche Ausreißer nach oben gekennzeichnet, innerhalb der letzten 10 Jahre war dies vor

Schaumbild 19: Kraftstoffverbrauch und CO₂-Emissionen bei Pkw-Neuzulassungen in Deutschland
1990–2011, in Liter/100 km und g CO₂/km

*vorläufig
Quelle: Berechnungen von E设EA nach Kraftfahrverordnung; siehe auch BMWU-Energiearten, Tabelle 8
3. Energieeffizienz

Für die Raumwärme (ohne Strom) seit 1993 um 270 MJ/m² vermindert hat. Zur Bewertung des tatsächlichen Energieverbrauchs der privaten Haushalte müssen zusätzlich die Bestandsveränderungen der lagerfähigen Energieträger (Heizöl, Kohle oder Holz) mit in den Blick genommen werden. Bezieht man die Schätzungen über die statistisch nicht erfassten Vorratsveränderungen mit in die Betrachtung ein, so ergab sich 2011 gegenüber den beobachteten Werten ein um 55 MJ höherer temperatur- und lagerbestandsbereinigter Verbrauch pro m² Wohnfläche.

3.3.4. Gewerbe, Handel und Dienstleistungen

Der Energieverbrauch im GHD-Sektor ist vergleichsweise heterogen. Diese Gruppe von Energieanwendern unterscheidet sich nicht nur hinsichtlich des Verbrauchsniveaus und seiner -struktur, sondern vor allem im Hinblick auf die Determinanten. Der größte Teil der Energie wird für Raumwärme (z.B. Banken,
Versicherungen) eingesetzt und ist von seiner Ausprägung und seinen Determinanten der Effizienzentwicklung deshalb eng verwandt mit dem Energieverbrauch bei den privaten Haushalten.

In den übrigen Bereichen des GHD-Sektors besteht zwischen Energieverbrauch und Wirtschaftsleistung ein stärkerer Zusammenhang. Energie wird zum Antrieb von Maschinen (z. B. Landwirtschaft, Handel) oder auch als Produktionsfaktor zur Bereitstellung von Dienstleistungen verwendet. Entsprechend unterschiedlich sind die Einflussfaktoren der Energieintensität in diesem Sektor.

Von 1990 bis 2011 ging die Energieintensität, bezogen auf die Zahl der Beschäftigten im GHD-Sektor, um etwa 33% zurück. Bezogen auf die Bruttowertschöpfung des Sektors (inflationsbereinigt) fiel der Rückgang des spezifischen Energieverbrauchs mit 43% noch deutlicher aus (vgl. Schaubild 21).

(Index 2000=100)

* vorläufig, z.T. geschätzt
Quelle: AGEB undDestatis
4. Energiepreise und -kosten

4.1. Energiepreise für Endverbraucher in Deutschland

In der öffentlichen Diskussion findet die Entwicklung der Energiepreise gegenwärtig viel Beachtung. Tatsächlich ist die Entwicklung sehr komplex und wird nicht nur von den Kosten der Energiebeschaffung und -be reitstellung, sondern auch von zahlreichen Sonderbe lastungen wie der Förderung von Strom aus erneuer baren Energiequellen und aus Kraft-Wärme-Kopplung oder der Stromsteuer im Rahmen der ökologischen Steuerreform bestimmt. Im Folgenden sollen diese einzelnen Determinanten genauer untersucht werden.

4.1.1. Erzeugungskosten

Ausgangspunkt der Strompreisbildung ist der Groß handels-Börsenmarkt. Der aktuelle Börsenpreis entspricht jedoch nicht den aktuellen Beschaffungskosten der Stromlieferanten, denn diese decken typischerweise ihren Bedarf durch eine Kombination verschiedener Bezugsquellen (längerfristige bilaterale Verträge, kurzfristige Verträge an der Börse) und verschiedener Stromprodukte (Strom, Optionen, Futures etc.). Strom wird an der Strombörse zu (Mindest-)Preisen angeboten, deren Höhe von der jeweiligen Erzeugungsanlage abhängt. Typischerweise orientieren sich die Gebote an den variablen Kosten der Kraftwerke (Brennstoff- und Entsorgungskosten, Emissionshandelszertifikate und Kernbrennstoffsteuer), so genannte Grenzkosten. Nach diesem Prinzip werden, beginnend mit den niedrigsten Grenzkosten, im Gebotsverfahren so lange Kraftwerke mit höheren Grenzkosten berück sichtigt, bis die Nachfrage an der Börse gedeckt ist. Das teuerste Gebot, das noch einen Zuschlag erhält, bestimmt den Börsen-Strompreis.

Als Merit-Order-Effekt wird die Verdrängung teurer produzierender Kraftwerke durch den Markteintritt eines Kraftwerks (bzw. einer Erneuerbare-Energien-Anlage) mit geringeren variablen Kosten bezeichnet.

Konkret sichtbar wird das Prinzip der Grenzkosten preisbildung daher am Großhandelspreis der europäischen Strombörsen. Stromangebot und -nachfrage werden dort im Stundenrhythmus gehandelt und unter Marktäusserungsbedingungen zum Ausgleich gebracht. Der auf diese Weise ermittelte Gleichge wichtspreis reflektiert sowohl die Anforderungen der Verbrauchersseite an das Erzeugungssystem als auch dessen Grenzkosten.

4.1.2. Transport und Verteilung

4. Energiepreise und -kosten

Die Netznutzungsentgelte für Strom, die der Genehmigung durch die Bundesnetzagentur unterliegen, enthalten auch die Kosten der Regelenergie, die zur Aufrechterhaltung der Versorgungsqualität (konstante Frequenz des Wechselstroms) sowie zur Anpassung der Strombereitstellung an veränderte Nachfragesituationen erforderlich ist. Die Netzkosten lagen 2011 nach Angaben der Bundesnetzagentur für Haushaltskunden (Niederspannung) im bundesweiten Durchschnitt bei 5,75 c/kWh, für Industriekunden (Hochspannung) hingegen bei 1,46 c/kWh. Je nach Netzbetreiber und Abnahmefall (Ausnutzungsdauer und Abnahmemenge) können die Netzentgelte im Einzelfall stark von den genannten Mittelwerten abweichen.

4.1.3. Steuern und Abgaben

Eine stetig zunehmende Bedeutung für die Entwicklung der Endverbraucherpreise haben die staatlich induzierten Steuer- und Abgabenbelastungen. Mit Inkrafttreten der ökologischen Energiesteuerreform am 1. April 1999 wurden die Endverbraucherpreise nachhaltig beeinflusst. Gleichzeitig wurde der Stromverbrauch auf der Grundlage des neu erlassenen Stromsteuergesetzes (StromStG) einer zusätzlichen Steuer unterworfen.

Schaubild 22: Preisentwicklung für Strom an der Leipziger EEX
Jahresmittel 2005–2012, in €/MWh

Quelle: EEX

Neben den Bundessteuern wie Mineralöl-, Öko- oder Stromsteuer haben die Energieversorger neben Abgaben auf Länderebene vor allem kommunale Abgaben zu tragen. Insbesondere für leitungsgebundene Energieträger wie Strom oder Gas folgt eine weitere Belastung aus der so genannten Konzessionsabgabe, die Energieversorgungsunternehmen an die Kommunen zahlen, um die öffentlichen Wege für ihre Leitungsnetze nutzen zu dürfen. Diese Kosten werden über die Energie lieferanten an ihre Endverbraucher weitergegeben.

Für Erdgas variieren die Konzessionsabgaben je nach Gemeindegröße bei Tariflieferungen zwischen 0,22 und 0,4 c/kWh und für Gas, das zu Kochzwecken oder zur Bereitstellung von Warmwasser geliefert wird, zwischen 0,51 und 0,93 c/kWh. Für Sondervertragskunden (industrielle Großabnehmer) im Erdgasbereich ist die Konzessionsabgabe auf 0,03 c/kWh begrenzt oder entfällt unter bestimmten Bedingungen vollständig.

Im Strombereich beträgt die maximale Belastung der Tarifkunden je nach Einwohnerzahl der Gemeinden zwischen 1,32 c/kWh (25.000 Einwohner) und 2,39 c/kWh (Gemeinden über 500.000 Einwohner). Auch hier gilt für energieintensive Sondervertragskunden grundsätzlich ein reduzierter Höchstsatz von 0,11 c/kWh, der unter Umständen weiter absinken kann.

4.1.4. EEG und KWK

Die Förderung erneuerbarer Energien in der Stromerzeugung sowie die Förderung der Kraft-Wärme-Kopplung (KWK) sind für den Strompreis von erheblicher Bedeutung.

Mit dem EEG konnte der Ausbau der erneuerbaren Energien stark beschleunigt werden: So hat sich die Stromerzeugung aus erneuerbaren Energien seit 1990 beinahe versiebenfacht und erreichte im Jahr 2011 ein Niveau von 123 TWh (dies entspricht gemessen an der Bruttostromerzeugung Deutschlands einem Anteil von 20,1 %). Allerdings unterliegt die Einspeisung der erneuerbaren Energien einer hohen Volatilität und liegt dadurch nicht konstant auf einem bestimmten Niveau.

Energiepreise und -kosten

Die Energiepreise und -kosten für die im Jahr 2011 25% bzw. 47% des Fördervolumens gezahlten wurden. Im Fall der Solarenergie resultiert dies zum einen aus der insgesamt erzeugten Menge an Strom, die mittlerweile rund 15,7% der gesamten nach EEG vergüteten Strommenge ausmacht, sowie aus der Höhe der durchschnittlichen Vergütungssätze. Denn diese lagen in der Vergangenheit mit rund 40,2 c/kWh deutlich über den Durchschnittsvergütungen, die beispielsweise für Wasser (7,4 c/kWh), Windenergie (9,3 c/kWh) oder Biomasse (19,1 c/kWh) im Jahr 2011 gezahlt wurden. Die Vergütungssätze für Neuanlagen im Bereich der Solarenergie sind jedoch in den letzten Jahren deutlich gesunken: Im April 2013 lagen sie je nach Anlage zwischen 11 c/kWh und 16 c/kWh.

Der Ausgleichsmechanismus setzt sich vereinfachend aus folgenden Schritten zusammen:

1. Die Netzbetreiber sind verpflichtet, Strom aus erneuerbaren Energien vorrangig in ihr Netz aufzunehmen, und zahlen für jede Kilowattstunde Strom, die aus erneuerbaren Stromerzeugungsquellen eingespeist wird, die im EEG festgelegten Vergütungssätze.

2. Der vergütungspflichtige Netzbetreiber überwälzt die anfallenden EEG-Vergütungen je nach Regelzone auf den zuständigen vorgelagerten Übertragungsnetzbetreiber.

3. Die Übertragungsnetzbetreiber gleichen die aufgenommenen EEG-Strommengen und die dafür gezahlten gesetzlich festgelegten Vergütungen untereinander aus.

Schaubild 23: Entwicklung des Fördervolumens nach Erneuerbare-Energien-Gesetz in Mrd. Euro

Quelle: BDEW
4. Energiepreise und -kosten

Nach der Ausgleichsmechanismusverordnung wird der EEG-Strom von den vier Übertragungsnetzbetreibern am Spotmarkt der Leipziger Strombörse verkauft.

Die Erlöse aus dem Stromverkauf werden mit den gezahlten Einspeisevergütungen verrechnet. Die Erzeugungskosten des EEG-Stroms liegen deutlich über den Kosten, die bei Stromerzeugung aus konventionellen Energiequellen anfallen. Aus diesem Grunde reichen die Erlöse aus dem Verkauf der EEG-Strommengen an der Börse nicht aus, um die gezahlten Einspeisevergütungen zu decken. Die verbleibenden Differenzkosten werden in Form einer festen Umlage (Cent pro kWh) mit der Stromrechnung an die Endverbraucher weitergegeben (EEG-Umlage).

Das am 1. April 2002 in Kraft getretene Kraft-Wärme-Kopplungsgesetz fördert die Modernisierung sowie den Ausbau der KWK-Stromerzeugung durch eine Abnahmeverpflichtung sowie durch Zuschläge zu dem als üblich anerkannten Preis. Diese Zuschläge werden

→ nach Alter und Modernität der Anlagen differenziert,

→ zeitlich befristet, degressiv ausgestaltet und

Sowohl das EEG als auch das KWK-Gesetz sehen eine Sonderregelung vor, welche die Belastungen für besonders stromintensive Unternehmen begrenzen sollen.

4.1.5. Endenergiepreise nach Kostenkomponenten und Verbrauchergruppen

Zusammengefasst hängen das Niveau und die Entwicklung der Verbraucherpreise für Strom ab von

→ den Kosten der Stromerzeugung/-beschaffung,

→ den Netznutzungsentgelten,

→ der Konzessionsabgabe,

→ der Stromsteuer,

→ der EEG-Einspeisevergütung und der KWK-Umlage sowie

→ der Mehrwertsteuer (betrifft nur private Haushalte).

Diese Preisbestandteile gehen mit unterschiedlichen Gewichten in die Strompreise der einzelnen Verbrauchergruppen ein. So trugen im Jahr 2012 bei den Haushaltskunden die Kosten von Erzeugung und Vertrieb mit einem Anteil von 32%, die Netze mit 23%, die Mehrwertsteuer mit 16%, die Stromsteuer mit 8% und die Konzessionsabgabe mit 6% zum Strompreis bei. Darüber hinaus erhöhen die Sonderlasten infolge der Förderung des Stroms aus erneuerbaren Energiequellen die Strompreise für Haushaltskunden um weitere 14%, die §19-Umlage um nochmals 1%.

4. Energiepreise und -kosten

Schaubild 24: Strompreise der Industriekunden in Deutschland
2005 bis 2012, ohne Stromsteuer, in €/MWh

Schaubild 25: Strompreise der privaten Haushalte in Deutschland
2005 bis 2012, in €/MWh

Quelle: BDEW, siehe auch BMWi-Energiedaten, Tabelle 2
Der Erdgaspreis setzt sich im Wesentlichen aus folgenden Kostenkomponenten zusammen:

→ Kosten der Gasbeschaffung/-gewinnung
→ Transport- und Verteilungskosten und
→ Mineralöl-/Ökosteuern

Schaubild 26: Gaspreise der Industriekunden in Deutschland 1998 bis 2011, in €/MWh

Quelle: Destatis und Berechnungen von EEFA, siehe auch BMWi-Energiedaten, Tabelle 26
Die Tankstellenpreise für Kraftstoffe setzen sich im Wesentlichen aus drei Komponenten zusammen:

- dem Produkt- oder Warenpreis
- den Verbrauchssteuern (Mineralöl- und Mehrwertsteuer sowie Rohölbevorratungsabgabe)
- der Marge inkl. Verarbeitungskosten.

Schaubild 28: Komponenten der Tankstellenpreise für Dieselkraftstoff
1998 bis 2011, in c/Liter

Quelle: DESTATIS und Berechnungen von EEFA, siehe auch BMWI-Energiedaten, Tabelle 26

Schaubild 29: Komponenten der Tankstellenpreise für Ottokraftstoff
1998 bis 2011, in c/Liter

Quelle: DESTATIS und Berechnungen von EEFA, siehe auch BMWI-Energiedaten, Tabelle 26
Tabelle 6: Energiepreise nach Verbrauchergruppen 1990–2011

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heizöl, leicht</td>
<td>€/l</td>
<td>0,19</td>
<td>0,31</td>
<td>0,42</td>
<td>0,63</td>
<td>0,84</td>
<td>342,1</td>
</tr>
<tr>
<td>Heizöl, schwer</td>
<td>€/l</td>
<td>0,11</td>
<td>0,16</td>
<td>0,22</td>
<td>0,43</td>
<td>0,56</td>
<td>409,1</td>
</tr>
<tr>
<td>Erdgas, Sonderabnehmer³</td>
<td>c/kWh</td>
<td>1,1</td>
<td>1,7</td>
<td>2,1</td>
<td>3,0</td>
<td>3,5</td>
<td>218,2</td>
</tr>
<tr>
<td>Erdgas, Tarifabnehmer</td>
<td>c/kWh</td>
<td>1,4</td>
<td>1,9</td>
<td>2,5</td>
<td>3,3</td>
<td>3,9</td>
<td>184,7</td>
</tr>
<tr>
<td>Strom, Sonderabnehmer⁴</td>
<td>c/kWh</td>
<td>4,8</td>
<td>3,2</td>
<td>3,4</td>
<td>4,5</td>
<td>5,1</td>
<td>6,3</td>
</tr>
<tr>
<td>Strom, Tarifabnehmer</td>
<td>c/kWh</td>
<td>10,6</td>
<td>7,4</td>
<td>9,2</td>
<td>11,6</td>
<td>12,9</td>
<td>21,7</td>
</tr>
<tr>
<td>Fernwärme</td>
<td>€/GJ</td>
<td>9,11</td>
<td>10,07</td>
<td>12,01</td>
<td>10,72</td>
<td>10,80</td>
<td>18,6</td>
</tr>
<tr>
<td>Verkehr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dieselkraftstoff</td>
<td>€/l</td>
<td>0,40</td>
<td>0,65</td>
<td>0,86</td>
<td>1,04</td>
<td>1,2</td>
<td>200,0</td>
</tr>
<tr>
<td>Motorenbenzin</td>
<td>€/l</td>
<td>0,46</td>
<td>0,84</td>
<td>1,00</td>
<td>1,19</td>
<td>1,30</td>
<td>182,6</td>
</tr>
<tr>
<td>Strom</td>
<td>c/kWh</td>
<td>9,2</td>
<td>6,8</td>
<td>7,5</td>
<td>9,5</td>
<td>10,4</td>
<td>13,0</td>
</tr>
<tr>
<td>GHD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heizöl, leicht</td>
<td>€/l</td>
<td>0,19</td>
<td>0,31</td>
<td>0,42</td>
<td>0,63</td>
<td>0,84</td>
<td>342,1</td>
</tr>
<tr>
<td>Erdgas</td>
<td>c/kWh</td>
<td>2,1</td>
<td>2,8</td>
<td>3,9</td>
<td>4,0</td>
<td>4,2</td>
<td>97,2</td>
</tr>
<tr>
<td>Strom</td>
<td>c/kWh</td>
<td>13,1</td>
<td>9,2</td>
<td>10,4</td>
<td>13,2</td>
<td>14,4</td>
<td>9,9</td>
</tr>
<tr>
<td>Haushalte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motorenbenzin</td>
<td>€/l</td>
<td>0,61</td>
<td>1,02</td>
<td>1,21</td>
<td>1,41</td>
<td>1,54</td>
<td>152,5</td>
</tr>
<tr>
<td>Dieselkraftstoff</td>
<td>€/l</td>
<td>0,53</td>
<td>0,80</td>
<td>1,07</td>
<td>1,23</td>
<td>1,43</td>
<td>169,8</td>
</tr>
<tr>
<td>Heizöl, leicht</td>
<td>€/l</td>
<td>0,22</td>
<td>0,37</td>
<td>0,49</td>
<td>0,75</td>
<td>0,99</td>
<td>350,0</td>
</tr>
<tr>
<td>Erdgas</td>
<td>c/kWh</td>
<td>2,8</td>
<td>3,8</td>
<td>5,1</td>
<td>6,2</td>
<td>6,5</td>
<td>131,3</td>
</tr>
<tr>
<td>Strom, Sonderabnehmer⁵</td>
<td>c/kWh</td>
<td>5,8</td>
<td>5,9</td>
<td>7,3</td>
<td>7,8</td>
<td>8,44</td>
<td>45,5</td>
</tr>
<tr>
<td>Strom, Tarifabnehmer</td>
<td>c/kWh</td>
<td>15,3</td>
<td>15,6</td>
<td>19,4</td>
<td>22,08</td>
<td>23,79</td>
<td>55,5</td>
</tr>
<tr>
<td>Fernwärme</td>
<td>€/GJ</td>
<td>10,88</td>
<td>12,45</td>
<td>15,52</td>
<td>23,20</td>
<td>24,58</td>
<td>125,9</td>
</tr>
</tbody>
</table>

1 Einschließlich Verbrauchsteuern, Handels- und Transportleistung, jedoch ohne Mehrwertsteuer.
2 Einschließlich Verbrauchsteuern, Handels- und Transportleistung sowie Mehrwertsteuer.
3 Sonderabnehmer für Erdgas in der Industrie sind Kunden mit einem Erdgasbedarf von 500 000 MWh/a oder mehr. Dazu zählen beispielsweise erdgasintensive Prozesse im Bereich der chemischen Grundstoffproduktion oder bei der Herstellung von Eisen und Stahl.
4 Übersteigt der Strombezug eines Industrieunternehmens (bei entsprechendem Leistungsbedarf) die Schwellen von 100 000 MWh/a ist typischerweise die Einstufung in einem individuellen Sondervertrag sinnvoll. Vor diesem Hintergrund sind unter industriellen Sonderabnehmern Stromintensive Branchen wie z. B. die Aluminiumindustrie, die chemische Industrie (bzw. Bereiche daraus wie Chlor-Alkali-Elektrolyse usw.), die Papier- und Gläsinustrie oder auch die Stahlindustrie (Elektro-Hütten-Industrie usw.) in der Industrie zusammengefasst.
5 Im Bereich der privaten Haushalte werden unter Sonderabnehmern u. a. die Nachtstromtarife (u. a. zum Betrieb von Elektro-Speichersystemen) oder Sondertarife für den Bereich der Elektro-Wärmepumpen erfasst. Hingegen spiegelt die Gruppe der Tarifabnehmer die durchschnittliche Strompreisentwicklung für die übrigen Anwendungsbereiche (Licht, Kühlung, Antrieb, Kommunikation usw.) im Bereich der privaten Haushalte wider.

Quelle: Berechnungen von EEFA nach Destatis
4.2. Energiekosten/-ausgaben ausgewählter Verbrauchsbereiche

Die Höhe der Energiekosten beeinflusst die Chancen des Wirtschaftsstandorts Deutschland. Für die im Wettbewerb stehende Industrie ist der Zugriff auf preiswerte Energie ein wichtiger Standortfaktor. Im internationalen Vergleich können überhöhte Energiekosten zu unerwünschten Standortverlagerungen und damit verbunden zu Produktions- und Beschäftigungseinbußen im Inland führen.

Bezogen auf den Brutto produktionswert (als Indikator für die Gesamtkosten) halten die Energiekosten über alle Wirtschaftszweige gemittelt einen Anteil von 2,6 %. Auf der Ebene einzelner Wirtschaftszweige zeigt sich, dass energieintensive Sektoren überproportionale Kostenbelastungen zu tragen haben. So sind die Energiekosten, bezogen auf den Brutto produktionswert, in der Kalkindustrie mit 22,7 %, der Zementindustrie mit 17,5 % und in der Ziegelindustrie mit 14,2 % überdurchschnittlich hoch. Im Vergleich dazu sind die Energiekosten in den vielen anderen Bereichen deutlich geringer. Im Sektor Tabakverarbeitung beispielsweise müssen nur 0,3 % des Brutto produktionswertes für Energiekosten aufgebracht werden.

Die Energieausgaben der privaten Haushalte (ohne Kraftstoffe) sind im Zeitraum 1996–2011 ebenfalls deutlich angestiegen (vgl. Schaubild 31, Seite 46). Verantwortlich dafür waren vor allem die Kostensteigerungen bei den Energieträgern, die als Brennstoffe zur W ohnraumbeheizung oder zur Warmwasserbereitung (+ 79 %) sowie zu Kochzwecken (+ 167 %) verwendet werden. Die Ausgaben für Strom zu Antriebs- oder Beleuchtungszwecken sind im selben

Schaubild 30: Energiekosten in der Industrie
1997–2011, in Mrd. Euro und Prozent

* vorläufig, teilweise geschätzt
Quelle: Berechnungen von EEFA nach AGEB, DESTATIS, siehe auch BMWi-Energiedaten, Tabelle 27
Zeitraum um 77% gestiegen. Insgesamt sind die Energieausgaben seit 1996 um 87% auf mehr als 72 Mrd. Euro gewachsen.

Bezieht man die Kraftstoffe, die die privaten Haushalte zur Befriedigung ihrer Mobilitätsbedürfnisse verbrauchen, mit in die Betrachtung ein, erhöhen sich die Energieausgaben der privaten Haushalte auf mehr als 120 Mrd. Euro bzw. 2.977 Euro je Haushalt.

4.3. Energieaufkommen und Verwendung in wertmäßiger Betrachtung

Eine kostenmäßige Betrachtung lässt sich nicht nur für den Endverbrauch, sondern auch für das gesamte Aufkommen und die Verwendung von Primärenergie durchführen. Dazu wird der gesamte Primärenergieverbrauch (differenziert nach Energieträgern) mit entsprechenden Preisen bewertet.

Der Wert der inländischen Gewinnung von Braun-
kohle, Steinkohle sowie in geringeren Mengen auch von Rohöl und Erdgas, der in hohem Maße dem inlän-

Insgesamt erreicht das Marktvolumen bei der Bereit-
stellung von Primärenergie mit rund 126 Mrd. Euro nur gut die Hälfte des Wertes, der dem Endverbraucher als Endenergie zur Verfügung gestellt wird (244 Mrd. Euro, vgl. Schaubild 32). Ursächlich dafür ist einerseits die Wertschöpfung, die in den Umwandlungsbereichen bei der Erzeugung von Strom, Fernwärme und Min-
elölprodukten geschaffen wird. Andererseits werden darin z. B. auch die steuerlichen Belastungen beim Endverbrauch, z. B. durch die Mineralölsteuer oder die Mehrwertsteuer, sichtbar.

Schaubild 32: Energieaufkommen und Verwendung
2010, in PJ und Mrd. Euro

Quelle: AGEB und Berechnungen von EEFA
5. Energie und Umwelt

5.1. Ziele der Energie- und Klimaschutzpolitik

Schaubild 33: Treibhausgasemissionen und Minderungsziele für Deutschland (EU-Ziele)
in Mio. t CO$_2$-Äquivalenten (CO$_2$aq)
Eine solche Zielsetzung hat insbesondere Folgen für die Energiepolitik, denn fast 85% der Treibhausgasemissionen in Deutschland stammen aus der Erzeugung und Nutzung von Energie.

Neben dem gemeinsamen Ziel von Energie- und Klimaschutzpolitik, die Treibhausgasemissionen zu senken, hat sich Deutschland zusätzlich zur Reduktion von Luftschadstoffen verpflichtet. Grundlage für diese Minderungsverpflichtung ist die europäische Richtlinie zur Festlegung von Emissionshöchstgrenzen, die durch die 39. Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (39. BImSchV) in deutsches Recht umgesetzt wurde. Demnach mussten die jährlichen Emissionen von Stickstoffoxiden (NOx), Schwefeldioxid (SOx), flüchtigen organischen Verbindungen ohne Methan (NMVOC) sowie Ammoniak (NH3) in Deutschland bis zum Jahr 2010 um bis zu 90% gegenüber 1990 reduziert werden.

5.2. Emissionen von Treibhausgasen und Schadstoffen

Schaubild 34: Entwicklung der Treibhausgasemissionen in Deutschland und deren Abweichung vom Kyoto-Minderungsziel* 1990–2011, in Mio. t CO2-Äquivalenten (CO2Äq) und Prozent

* ohne die Berücksichtigung von CO2-Senken (Wälder, welche der Atmosphäre Kohlenstoff entziehen und negativ zu den Treibhausgasen eines Landes bilanziert werden können)
** vorläufig, geschätzt
Quelle: UBA, AGEB, siehe auch BMWi-Energiedaten, Tabelle 10

Deutschlands Minderungsziele sind jedoch kaum in Gefahr; in den vergangenen drei Jahren lagen die Treibhausgasemissionen weit unterhalb des für den Zeitraum 2008–2012 geltenden Kyoto-Zielwerts, 2011 um -6,4%.

Betrachtet man die einzelnen Energieträger als Emittenten, so sind die festen Brennstoffe mit 324 Mio. t bzw. 42 % im Jahr 2010 die Hauptverursacher, obwohl diese mit nur 23 % zum Primärenergieverbrauch bei- tragen.

Die Minderungsziele für SO2-Emissionen konnten sogar übertroffen werden; bei den NOx-, NH₃- und NMVOC-Emissionen wurden die Zielwerte dagegen noch nicht ganz erreicht (vgl. Tabelle 7).

| Schadstoffemissionen in Deutschland 1990–2011, in 1.000 t |
|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| NOx | 2.877 | 2.175 | 1.925 | 1.574 | 1.329 | 1.288 | 1.051 |
| SO₂ | 5.292 | 1.718 | 653 | 447 | 444 | 445 | 520 |
| NMVOC | 3.131 | 1.808 | 1.394 | 1.146 | 1.055 | 1.006 | 995 |
| NH₃ | 700 | 599 | 602 | 573 | 578 | – | 550 |

* BMU (2007), Nationales Programm zur Verminderung der Ozonkonzentration und zur Einhaltung der Emissionshöchstmengen, BMU-Themenbereich: Luftreinhaltung. Internet: www.bmu.de, Download-Service

Quelle: UBA, siehe auch BMWi-Energiedaten, Tabelle 9
6. Internationale Aspekte

Sowohl mit der schrittweisen Schaffung eines einheitlichen europäischen Binnenmarktes für die leitungsgebundenen Energieträger Strom und Gas wie auch mit der Europäisierung der Klimaschutzpolitik durch den Handel mit Emissionszertifikaten hat die internationale Perspektive für die nationale Energie- und Umweltpolitik sichtbar an Bedeutung gewonnen. Verstärkt wird die wachsende Bedeutung internationaler Aspekte durch den fortschreitenden Trend zur Globalisierung und den sich verschärfenden internationalen Standortwettbewerb, dem insbesondere exportorientierte Volkswirtschaften wie Deutschland ausgesetzt sind.

Der folgende Abschnitt erweitert deshalb die eher nationale Sicht um eine internationale Betrachtung des Energiemarktes und der Emissionssituation. Es liegt auf der Hand, dass angesichts der Komplexität internationaler Energiemärkte und der Vielzahl der empirischen Fakten an dieser Stelle nur eine Auswahl besonders wichtiger Strukturindikatoren und Kennziffern (wie Versorgungsstrukturen, internationale Energiepreise oder Effizienzkriterien) dargestellt werden können.

6.1. Energiepreise im europäischen Vergleich

Die Energiepreise stellen einen wichtigen Faktor für die Wettbewerbsfähigkeit eines Landes dar. Wichtig ist also der relative Abstand der Energiepreise zu denen anderer wichtiger Industriestandorte. Dazu soll ein Blick auf die Strom- und Gaspreise für Industriekunden europäischer Staaten geworfen werden. Auf die Darstellung der Ölpreise wird an dieser Stelle verzichtet. Zwar sind sie ein wichtiger Bestandteil der Energiekosten insgesamt, im internationalen Standortwettbewerb spielen sie jedoch eine eher untergeordnete Rolle.

Die weiter oben skizzierten Entwicklungstrends bei den Erdgaspreisen, aber auch unterschiedliche Bezugsquellen, Konditionen in den langfristigen Lieferverträgen, die spezifischen Kostenstrukturen der Gasversorgung sowie regionale Besonderheiten der Energiebesteuerung sind mitverantwortlich dafür, dass die Gaspreise der Industriekunden hierzulande um ca. 30% über dem Durchschnitt und damit im Spitzenbereich der Europäischen Union liegen (EU 27: 3,8 c/kWh). Die höchsten Erdgaspreise zahlen jedoch mit 6,5 c/kWh die Industriekunden in Dänemark. Ohne Steuerbelastung liegen die Erdgaspreise für deutsche Industriekunden auf einem europäischen Spitzenplatz (vgl. Schaubild 36, Seite 52).

Auch die Industriestrompreise (ohne Mehrwertsteuer) weisen nach Angaben des Europäischen Amtes für Statistik (Eurostat) innerhalb der EU eine recht große Spannweite auf: So lagen die Strompreise im 2. Halbjahr 2011 von Spitzenreiter Italien (13,9 c/kWh) um fast 100% über denen von Frankreich (7 c/kWh). Im europäischen Durchschnitt (EU 27) zahlten Industriekunden im zweiten Halbjahr 2011 9,8 c/kWh.

In Deutschland liegen die Strompreise mit 11,4 c/kWh um 14% über dem europäischen Durchschnitt, damit zahlen die Industriekunden hierzulande auch für Strom Spitzenpreise. Besonders niedrige Strompreise hingegen sind – neben Frankreich – auch in Rumänien, Schweden und Finnland zu finden (vgl. Schaubild 37, Seite 52).
Schaubild 36: Erdgaspreise 2011 der Industrie im europäischen Vergleich
in Euro/MWh, Preise 2. Halbjahr 2011 (Standardverbraucher: 10.000–100.000 GJ/a)

Quelle: Eurostat, siehe auch BMWi-Energiedaten, Tabelle 30

Schaubild 37: Strompreise 2011 der Industrie im europäischen Vergleich
in Euro/MWh, Preise 1. Halbjahr 2011 (Standardverbraucher: 2.000–20.000 MWh/a)

Quelle: Eurostat, siehe auch BMWi-Energiedaten, Tabelle 30
6.2. Energieversorgungsstrukturen in der EU

Neben Energiepreisen spielt auch die Abhängigkeit von fossilen Energieträgern als ein Aspekt der Versorgungssicherheit eine zunehmend wichtige energiepolitische Rolle.

In der Stromerzeugung ist die Möglichkeit, fossile Energieträger zu ersetzen, eher gegeben – zum einen durch den Einsatz von Kernenergie und zum anderen durch den Einsatz regenerativer Energien. Hier spielen vor allem geografische Besonderheiten eine Rolle. Länder wie Österreich oder Schweden können ihre großen Wasserkraftpotenziale ausnutzen, während diese Option in Deutschland aufgrund der geografischen Gegebenheiten kaum besteht. Frankreich wiederum setzt bei der Stromerzeugung vor allem auf die Kernenergie (75%). In der deutschen Stromversorgung kommen nicht zuletzt aufgrund der Kohlevorkommen fossile Energieträger deutlich stärker zum Einsatz (vgl. Schaubild 39, Seite 54) als in den drei genannten Ländern. Die größten Anteile fossiler Energieträger sind allerdings in Irland und in den Niederlanden mit jeweils 86% zu finden.

Schaubild 38: Primärenergieträgerstruktur in der EU 15
2010, in Prozent

Quelle: Berechnungen von EEFA nach Eurostat
6.3. Gesamtwirtschaftliche Effizienz im internationalen Vergleich

Im internationalen Vergleich der gesamtwirtschaftlichen Energieeffizienz schneiden die westeuropäischen Industriestaaten, darunter auch Deutschland, vergleichsweise gut ab. Mit 6,2 GJ/1.000 Euro BIP im Jahr 2010 liegt der spezifische Energieverbrauch in Deutschland um knapp 7% unterhalb des EU-Durchschnitts (vgl. Schaubild 40, Seite 55).

Schlecht schneiden in diesem Vergleich die USA ab, deren spezifischer Energieverbrauch den hierzulande um mehr als 50% überschreitet.

Am wenigsten effizient im Umgang mit Energie bezogen auf die Wirtschaftsleistung sind jedoch Indien, China und insbesondere Russland.

Deutschland weist im internationalen Vergleich einen relativ hohen Energieverbrauch pro Kopf auf, welcher mit ca. 168 GJ/Kopf knapp 17% über dem Durchschnitt der EU 27 liegt. Im Vergleich zu den USA mit einem Verbrauch von 299 GJ/Kopf fällt der Energieverbrauch jedoch moderat aus.
Schaubild 40: Primärenergieverbrauch je Einheit Bruttoinlandsprodukt im internationalen Vergleich
2010, in GJ/1.000 Euro

Quelle: IEA, siehe auch BMWi-Energiedaten, Tabelle 32

Schaubild 41: Primärenergieverbrauch je Einwohner im internationalen Vergleich
2010, in GJ/Kopf

Quelle: IEA, siehe auch BMWi-Energiedaten, Tabelle 32
6.4. Wirkungsgrade der Kraftwerke im internationalen Vergleich

6.5. Treibhausgasemissionen und Minderungsziele in der EU

Deutschland ist mit Abstand der größte Emittent an Treibhausgasen in der EU. So ist Deutschland im Jahr 2010 für ca. 24% der Treibhausgasemissionen der an der EU-Lastenteilung beteiligten 15 „alten“ Mitgliedstaaten verantwortlich, zusammen mit dem Vereinigten Königreich, Italien und Frankreich sind es ca. 67% (dies entspricht in etwa auch dem Anteil des Primärenergieverbrauchs dieser Länder am PEV der EU 15).

In der EU 15 sind die Emissionen bis 2010 gegenüber 1990 um knapp 10 % zurückgegangen, womit die EU 15 ihr Reduktionsziel von 8 % bereits erfüllt hat. Schweden, Großbritannien, Griechenland, Frankreich, Belgien, Deutschland und Irland haben ihre Ziele bis 2010 erreicht, während beispielsweise Luxemburg seine Emissionen noch um 22 % senken muss, um seinen Verpflichtungen gerecht werden zu können (vgl. Schaubild 44, Seite 58).

Die größten Spielräume haben die neuen EU-Mitgliedstaaten, welche aufgrund ihres Status als Transformationsland und aufgrund erheblicher Strukturveränderungen große Minderungen im Vergleich zu ihren Emissionen im Basisjahr aufweisen und auch nicht Teil der gemeinschaftlichen Minderungsverpflichtungen sind, sondern jeweils nationale begrenzte Zielwerte im Rahmen des Kyoto-Protokolls haben.

Schaubild 43: Treibhausgasemissionen (CO₂-Äquivalente, CO₂ₐq) innerhalb der EU 27 in 2010 im Vergleich zu 1990 (absolut) ohne LULUCF

Emissionen infolge von Tätigkeiten im Sektor Landnutzung, Landnutzungsänderungen und Forstwirtschaft (LULUCF) sind hier nicht berücksichtigt

Quelle: Europäische Umweltagentur (EEA) 2012
Schaubild 44: Abweichung der Emissionen der EU-Mitgliedstaaten zum Kyoto-Ziel
in Prozent, bezogen auf beobachtete Emissionen im Jahr 2010, ohne CO₂-Senken*

* ohne die Berücksichtigung von CO₂-Senken (Wälder, welche der Atmosphäre Kohlenstoff entziehen und negativ zu den Treibhausgasen eines Landes bilanziert werden können)
Quelle: European Environment Agency
7. Anhang

Tabelle A1: Umrechnungsfaktoren – Energieeinheiten

<table>
<thead>
<tr>
<th>Energieeinheit</th>
<th>Kilojoule (kJ)</th>
<th>Kilowattstunden (kWh)</th>
<th>Kilokalorien (kcal)</th>
<th>kg Steinkohleeinheiten (kg SKE)</th>
<th>kg Rohöleinheiten (kg RÖE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kJ</td>
<td>1</td>
<td>0,000278</td>
<td>0,2388</td>
<td>0,000341</td>
<td>0,000239</td>
</tr>
<tr>
<td>1 kWh</td>
<td>3.600</td>
<td>1</td>
<td>860</td>
<td>0,123</td>
<td>0,0860</td>
</tr>
<tr>
<td>1 kcal</td>
<td>4,1868</td>
<td>0,001163</td>
<td>1</td>
<td>0,00143</td>
<td>0,0001</td>
</tr>
<tr>
<td>1 kg SKE</td>
<td>29,308</td>
<td>8,141</td>
<td>7,000</td>
<td>1</td>
<td>0,7</td>
</tr>
<tr>
<td>1 kg RÖE</td>
<td>41,868</td>
<td>11,63</td>
<td>10,000</td>
<td>1,429</td>
<td>1</td>
</tr>
</tbody>
</table>

Quelle: AGEB

Tabelle A2: Vorzeichen

<table>
<thead>
<tr>
<th>Einheit</th>
<th>Kilo k</th>
<th>10^3 Tausend</th>
<th>Mega M</th>
<th>10^6 Million</th>
<th>Giga G</th>
<th>10^9 Milliarde</th>
<th>Tera T</th>
<th>10^12 Billion</th>
<th>Peta P</th>
<th>10^15 Billiarde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kilo</td>
<td>k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mega</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giga</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tera</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peta</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quelle: AGEB

Abkürzungsverzeichnis

ARGE-Stat: Arbeitsgruppe Erneuerbare-Energien-Statistik
AGEB: Arbeitsgemeinschaft Energiebilanzen
BAFA: Bundesamt für Wirtschaft und Ausfuhrkontrolle
BDEW: Bundesverband der Energie- und Wasserwirtschaft
BDI: Bundesverband der Deutschen Industrie
BGR: Bundesanstalt für Geowissenschaften und Rohstoffe
BIP: Bruttoinlandsprodukt
BMU: Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit
BMWi: Bundesministerium für Wirtschaft und Technologie
BPW: Bruttoproduktionswert
DIW: Deutsches Institut für Wirtschaftsforschung
Destatis: Statistisches Bundesamt Deutschland
EDEG: Erneuerbare-Energien-Gesetz
EEV: Energieeinsparverordnung
EEX: European Energy Exchange
EIA: Energy Information Agency
EnWG: Energiewirtschaftsgesetz
Eurostat: Statistisches Amt der Europäischen Union
GfK: Gesellschaft für Konsumforschung
GHD: Gewerbe, Handel und Dienstleistungen
GuD-Anlagen: Kombinierte Gas- und Dampfturbinenanlagen auf Basis Erdgas
GUS: Gemeinschaft unabhängiger Staaten
IEA: International Energy Agency
KWK: Kraft-Wärme-Kopplung
MIV: Motorisierter Individualverkehr
OECD/NEA: Organisation for Economic Co-operation and Development/Nuclear Energy Agency
OPEC: Organisation of the Petroleum Exporting Countries
PEV: Primärenergieverbrauch
VDN: Verband der Netzbetreiber
<table>
<thead>
<tr>
<th>Begriff</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differenzkosten</td>
<td>Die Differenzkosten des EEG ergeben sich aus den gezahlten Vergütungszahlungen der Übertragungsnetzbetreiber (ÜNB) abzüglich der durch den Verkauf des EEG-Stroms erzielten Einnahmen der ÜNB.</td>
</tr>
<tr>
<td>Einspeisevergütung</td>
<td>Betreibern von Erneuerbare-Energien-Anlagen wird nach dem EEG eine gesetzliche Vergütung pro eingespeister Kilowattstunde Strom zugesichert.</td>
</tr>
<tr>
<td>Emissionshandelszertifikat</td>
<td>„Emissionshandelszertifikat“ bezeichnet das Zertifikat, das im Rahmen des EU-Emissionshandels zur Emission von einer Tonne Kohlendioxidäquivalent in einem bestimmten Zeitraum (Handelsperiode) berechtigt.</td>
</tr>
</tbody>
</table>

Endenergieverbrauch Als Endenergieverbrauch wird die Verwendung von Energieträgern in einzelnen Verbrauchssektoren bezeichnet, sofern sie unmittelbar zur Erzeugung von Nutzenergie oder für Energiedienstleistungen eingesetzt werden.

Energieträger Energieträger sind Stoffe, in denen Energie mechanisch, thermisch, chemisch oder physikalisch gespeichert ist.

Fossile Energieträger Fossile Energieträger sind solche, deren Vorrat erschöpftbar ist und die aus Biomasse im Laufe von Jahrmillionen unter hohem Druck und hoher Temperatur entstanden sind; es handelt sich um Ener gierohstoffe mit unterschiedlichen Kohlenstoffverbindungen: Öle, Kohlen, Gase.

Höchstspannungs-Gleichstromübertragung (HGÜ) Die Höchstspannungs-Gleichstrom-Übertragung (HGÜ) ist ein Verfahren zur Übertragung von großen elektrischen Leistungen bei sehr hohen Spannungen (ab 220 kV) über sehr große Entfernungen. Oft zu finden ist das Kürzel DC, was von der englischen Bezeichnung „direct current“ (= Gleichstrom) stammt. Für die Verbindung mit dem herkömmlichen Wechselstromnetz sind Konverter erforderlich.

Leistung, elektrische Die elektrische Leistung gibt an, wie viel Arbeit in einer bestimmten Zeit verrichtet wird. Die physikalische Leistung ist definiert als Arbeit pro Zeiteinheit. Die Leistung (P) wird gemessen in Watt (W). Entsprechend ist: 1 Kilowatt (kW) = 1.000 Watt, 1 Megawatt (MW) = 1.000 kW.

Merit-Order Als „Merit-Order“ wird die Sortierung der Angebote eines Marktes nach ihrem Angebotspreis bezeichnet. Bei der Strombörse wird diese Merit-Order verwendet, um sicherzustellen, dass nur die billigsten Kraftwerke zum Einsatz kommen. Im Ergebnis wird durch die Merit-Order der Einsatzplan der Kraftwerke anhand der variablen Erzeugungskosten, also der Brennstoffkosten, bestimmt, wodurch die am teuersten produzierenden Kraftwerke (bei unveränderter Nachfrage) vom Markt verdrängt werden und Strom zu günstigeren Preisen verkauft wird.

Primärenergie Primärenergie ist der rechnerisch nutzbare Energiegehalt eines natürlich vorkommenden Energieträgers.
<table>
<thead>
<tr>
<th>Glossar</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärenergieträger</td>
<td>Primärenergieträger sind Energieträger, die noch keiner Umwandlung unterworfen wurden (beispielsweise Stein- und Braunkohle, Erdöl, Erdgas und spaltbares Material wie Uran) sowie erneuerbare Energien (Sonnenenergie, Windkraft, Wasserkraft, Erdwärme und Gezeitenenergie).</td>
</tr>
<tr>
<td>Primärenergieverbrauch</td>
<td>Der Primärenergieverbrauch (PEV) ist das saldierte Ergebnis aus inländischer Produktion, dem Außenhandelssaldo bei Energieträgern unter Abzug der Hochseebunkerungen sowie unter Berücksichtigung der Lagerbestandsveränderungen.</td>
</tr>
<tr>
<td>Prozesswärme</td>
<td>Wird für technische Prozesse wie Garen, Schmieden, Schmelzen oder Trocknen benötigt. Sie kann durch Verbrennung, elektrischen Strom oder, im günstigsten Fall, durch Abwärme bereitgestellt werden.</td>
</tr>
<tr>
<td>Sekundärenergieträger</td>
<td>Im Unterschied zu den Primärenergieträgern sind Sekundärenergieträger solche, die aus der Umwandlung von Primärenergieträgern entstehen. Dies sind alle Stein- und Braunkohlenprodukte sowie Mineralölprodukte, Gichtgas, Konvertergas, Kokereigas, Strom und Fernwärme. Sekundärenergieträger können aber auch aus der Umwandlung anderer Sekundärenergieträger entstehen.</td>
</tr>
<tr>
<td>Spitzenlast</td>
<td>Die Spitzenlast ist die maximale Leistung, die während einer Zeitspanne von einer Verbrauchseinrichtung bezogen wird oder über ein Versorgungsnetz aufzubringen ist.</td>
</tr>
</tbody>
</table>
Zuverlässige "Lastesel"

Neue Speicher braucht das Land

Deutschland braucht in den kommenden Jahrzehnten neue Technologien für die Speicherung von Energie. Eine neue Forschungsinitiative fördert die Entwicklung der Speicherkonzepte für morgen.

Smart Grids sind ein wichtiger Teil der Energiewende. Sechs Modellregionen haben im Forschungsprojekt "Energy" konkrete Lösungen entwickelt.

Konventionelle Kraftwerke liefern den Löwenanteil des Stroms und werden für eine sichere Energieversorgung gebraucht. Doch erneuerbare Energien verdrängen sie zusehends vom Markt.

Informationen aus erster Hand.
Energiewende lesen, Energiewende verstehen.

Um den Newsletter zu abonnieren, haben Sie mehrere Möglichkeiten:
► Wählen Sie den Newsletter im Abo-Service auf www.bmwi.de aus,
► schreiben Sie eine E-Mail an energiewende@bmwi.bund.de,
► laden Sie den Newsletter in der Mediathek auf www.bmwi.de als Datei herunter
► oder lesen Sie ihn online auf www.bmwi-energiewende.de.

Außerdem gibt es „Energiewende!“ auch als App für Ihr iPad oder Android-Tablet, zu finden in den App Stores bei iTunes und Google Play unter dem Stichwort „Energiewende“.
Zufrieden? Ihre Meinung ist uns wichtig!

Fragebogen bitte senden an: Bundesministerium für Wirtschaft und Technologie Öffentlichkeitsarbeit 11019 Berlin

oder senden per FAX an:
0 30 18/6 15-52 08

1. Wie gefällt Ihnen die Broschüre „Energie in Deutschland“ insgesamt?
☐ Sehr gut ☐ Gut ☐ Weniger gut ☐ Gar nicht

2. Hat Ihnen die Broschüre weitergeholfen?
☐ Sehr gut ☐ Gut ☐ Weniger gut ☐ Gar nicht

3. Wie beurteilen Sie folgende Teilaspekte?

Informationsgehalt:
☐ Sehr gut ☐ Gut ☐ Weniger gut ☐ Gar nicht

Das würde ich mir anders wünschen: __

Themenwahl:
☐ Sehr gut ☐ Gut ☐ Weniger gut ☐ Gar nicht

Ich hätte gerne mehr zu folgenden Themen gelesen: _______________________________________

Praxisnähe:
☐ Sehr gut ☐ Gut ☐ Weniger gut ☐ Gar nicht

Das würde ich mir anders wünschen: __

Grafiken:
☐ Sehr gut ☐ Gut ☐ Weniger gut ☐ Gar nicht

Das würde ich mir anders wünschen: __

Vielen Dank fürs Mitmachen!