Wasserstoff ist ein Gas und auf der Erde reichlich vorhanden, allerdings fast ausschließlich in chemischen Verbindungen (Wasser, Säuren, Kohlenwasserstoffen, etc.). Wasserstoff wird gewonnen, indem man Wasser (H2O) in Sauerstoff (O) und Wasserstoff (H2) aufspaltet. Allerdings braucht es viel Energie, um das Molekül H2 abzuspalten. Geschieht dies mit Hilfe elektrischen Stroms, spricht man von Elektrolyse.
Innovative Herstellungsverfahren
Für die Herstellung von Wasserstoff mittels Elektrolyse kann Strom aus erneuerbaren Energien wie Wind und Sonne verwendet werden. Dieses Verfahren zur Herstellung des sogenannten „grünen Wasserstoffs“ wird auch als Power-to-Gas bezeichnet und ist eine der Power-to-X-Technologien (PtX-Technologien), bei denen Strom genutzt wird, um zum Beispiel Gase (Power-to-Gas), Wärme (Power-to-Heat) oder flüssige Energieträger (Power-to-Liquid) herzustellen. PtX-Technologien gelten als wichtige Lösung, um die Klimaziele einzuhalten und den Ausstoß von Treibhausgasen zu verringern.
Bei der Herstellung von Wasserstoff mittels Elektrolyse werden vier Technologien unterschieden: Die alkalische Elektrolyse (AEL), die Proton-Exchange-Membran Elektrolyse (PEM), die Anionenaustauschmembran-Elektrolyseur (AEM) und die Hochtemperaturelektrolyse (HTEL). Die alkalische Elektrolyse ist bereits seit über einem Jahrhundert bekannt und kommerziell nutzbar, die PEM-Elektrolyse stellt eine deutlich jüngere Technologie dar, die ebenfalls kommerziell einsatzbereit ist. Gegenüber der AEL bietet die Technologie noch viel Potenzial für technische Entwicklungen und Kosteneinsparungen. Entwicklungsresultate bei der AEM-Elektrolysetechnologie zeigen ihre Eignung, Wasserstoffproduktion aus regenerativem Strom in Zukunft massentauglich zu machen. Die HTEL befindet sich noch in der Pilotphase, ihr wird für die Zukunft eine zunehmende Bedeutung zugerechnet.
Auch der durch CO2-Abscheidung und -Speicherung (sogenannte Carbon-Capture-and-Storage, CCS) produzierte „blaue“ Wasserstoff kann für eine Übergangszeit einen Beitrag zur CO2-Reduzierung leisten. Der „blaue“ Wasserstoff gilt als CO2-neutral, wenn bei der Herstellung kein CO2 in die Atmosphäre entweicht.
„Grauer“ Wasserstoff hingegen ist nicht CO2-neutral: Bei der Herstellung fällt in jedem Fall CO2 an, da er aus fossilen Energiequellen wie beispielsweise Erdgas gewonnen wird oder in der Industrie entsteht.
„Türkiser“ Wasserstoff wird durch die thermische Spaltung von Methan (Methanpyrolyse) hergestellt. Anstelle von CO2 entsteht dabei neben Wasserstoff fester Kohlenstoff. Bei der Herstellung von türkisem Wasserstoff muss deshalb kein gasförmiges Kohlendioxid unterirdisch gespeichert werden. Voraussetzungen für die CO2-Neutralität des Verfahrens sind die Wärmeversorgung des Hochtemperaturreaktors aus erneuerbaren Energie-quellen und eine dauerhafte Bindung des Kohlenstoffs.
Weitere Verfahren zur Herstellung von dekarbonisiertem Wasserstoff befinden sich derzeit in der Entwicklungsphase und zeigen bereits erste Erfolge. Insbesondere die Pyrolyse von Erdgas, das heißt die Aufspaltung von Methan in Wasserstoff und festen Kohlenstoff (Karbonpulver), bietet ein großes Entwicklungspotenzial. Durch sie könnte Wasserstoff in großem Maßstab und zu Kosten für die Nutzer bereitstellen, die unterhalb des Elektrolyse-Wasserstoffs liegen.